EXHIBIT I

STREAM FLOW (3)

REDSTONE CREEK ATD WALTERSBURG

Water	Minimum	Maximum	٠	Yearly Mean
Year	(MGD)(1)	(MGD)		(MGD)
1943 1944 1945 1946 1946 1948 1949 1951 1953 1953 1954 1956 1956 1963 1964 1966 1968	9.69 14.86 9.34 14.86 9.34 7.71 9.04 7.71 9.04 7.71 9.04 7.75 8.40 10.34 9.62 10.34 7.11 10.62 7.11 10.62	1,324.30 1,130.50 1,582.70 1,576.50 1,576.24 1,434.12 1,492.26 1,576.24 1,111.12 1,492.26 1,576.24 1,111.12 1,492.26 1,576.24 1,111.12 1,492.26 1,130.50 1,808.80 704.14 2,041.36 1,130.50 1,808.80 704.14 2,041.36 1,169.26 1,737.74 2,144.72 1,447.04		82.04 56.87 58.87 59.12 58.87 59.12 59.12 59.12 59.12 59.12 59.12 59.13 59

^{(1) -} Million gallons per day

^{(2) -} October 1, 1942 to September 30, 1943

^{(3) -} Taken from U.S. Geological Survey Reports

CHEMICAL & BACTERIOLOGICAL CHARACTERISTICS OF REDSTONE CREEK @ WALTERSBURG

	**************************************				***************************************		·	·							<u> </u>		_ 1			:					SHEE	T NO	<u> 1 0 F 3</u>
	DAT	E	1	FIEL	DANA	LYSIS					·			LAE	BORAT	FORY	Δ	NAL	YSIS	i				• /,	1		BACTERIA
MONTH	DAY	YEAR	STREAM FLOW (CFS)	TEMPERATURE (DEGREES C)	DISSOLVED OXYGEN	H (UNITS)	APPEARANCE (NO UNITS)	COLOR (PT-COSTD)	ODOR (UNITS)	TURBIDITY (UNITS)	H (UNITS)	ALKAEINITY	ACIDITY (ph 4)	ACIDITY (pH 8)	HARDNESS	B. O. D.	CHLORIDE	FLUORIDE	SULFATE	TOTAL SOLIDS	SUSPENDED [°] SOLIDS(TOTAL)	ALUMINUM	IRON (TOTAL)	MANGANESE	SOLUBLE ORTHO_ PHOSPHATE	ABS	COLIFORM ORGANISMS MPN/100 CC OR MISC.
6	19	62	8.6	27.0	5.3	7.1	Pale Yellow	30	Faint Grassy	10	7.6	135	o	0	230	8.6	21	-	_	430	5	-	0.8	-	_	1.4	240
9	13	62	8.0	23.0	8.0	7.2	Yellow	25	Foint Grossy	15	7.2	130	0	o	235	2.3	27	-	136	405	15	-	0.6	0	_	1.4	711,000
12	19	62	-	4.5	l'Deep 5.5	6.5	Dark Yellow	10	Distinct Earthy	170	6.4	55	0	6	420	2.0	35	-	460	890	80		25.0	4.0	-	1.05	930
3	27	63		11.0		6.5	Dork Yellow	20	Faint Earthy	120	6.0	26	0	40	345	1.6	12	-	360	720	125	-	12.0	3.3	-	0.05	711, 000
6	4	63	46.0	17.0	I.5'Deep O	6.0	Rust Brown	10	Very Foint Musty	220	3.3	0	52	104	740	2.6	14	-	950	1445	40	-	70.0	9.0	-	0,45	46,000
9	17	63	13.0	21.1	l'Deep O	5.0 ~	Rust	15	0	40	3.1	0	110	325	1900	4.0	34		2150	3790	65	-	100.0	14.0	-	1.04	245
12	12	63	-	5.0	l'Deep O	6.5 ,	Brown	10	0	60	6.0	25	0	40	720	21.0	51	-	950	1685	180	1	60.0	9.0	<u>-</u>	1.00	310,000
3	10	64	1490.0	6.7	2' Deep 6.0	7.0	Muddy	25	Foint Eorthy	320	6.5	43	0	0	115	8.0	9	4	80	660	390	- / 1	22.0	0.25	_	-	191,000
6	5	64	26.0	23.9	l'Deep O	6.0	Rust	20	Distinct Dis- agreeable	160 ,	3.1	0	70	248	1300	0.0	20	-	1850	3060	235	_	120.0	8.0		0.57	0
9	4	64	20.0.	17.8	O 5Deep O	5.5	Rust	5	Distinct Earthy	80	3.4	0	54	236	1325	10.0	23	-	2150	3620	260	-	80.0	8.0		0.45	0
11	20	64	134.0	8.3	l'Deep 1.6	6.0	Brown	40	Distinct Septic	250	6.2	58	0	0	332	9.0	18	*-	240	900	300	-	100.0	1.7	-	0.70	380
2	26	65	90.0	0.5	l'Deep 3.4	6. 5	Brown	15	Faint Earthy	255	5.6	37	σ	24	450	8.0	26	-	630	1025	150	- 4.	40.0	2.5		0.15	1,800
5	28	65	48.0	22.2	l'Deep O	6.5	Rust	15	Faint Earthy	325	3.5	0	26	95	840		19	_	1450	1780	290	-	60.0	8.0		0.20	0 L 53,500 C 0 R
6	28	65		-	-		L.M.			-	3.0	.0	Total = as H 2	3.Î SO ₄	410	-	11	-	538	_	_	₹	<u>-</u>			•	NO ₃ =0.3 PPM Spec.Cond. = 134
9	2	65	26.0	16.1	O.7Deep O		Rust	5	Foint Eorthy	180	3.4	0	28	i40	900	-	,18	-	2,000	2,050	235	-	70.0	2.5	_	0.50	110,000 L 110,000 C 110,000 R
0	28	65		-	-	-	\$10 ₂ = 14 PPM	-	K = 8.8 PPM Na = 182PPM	-	3 .2	0	Total= as H ₂	18 SO ₄	1170Hdns. Ca-260 Mg-127	- -	25	0.4	590	Diss. Solids 2280		0.6	0.16	5.8		-	NO ₃ =0.9 PPM Spec. Cond. = 2730 PPM
11	30	65	26.0	3.33	O.5Deep O.6	6.5	Yellow	30	Distinct Chemical	350	5. 9	40	0	250	1050	17.0	28		1325	2175	170	.	80.0	3.2	-	1.40	2,400,000 L 2,400,000 C 2,400,000 R
2	23	66	68.0	1.6	0.75' Deep 7.0	6.5	Rust	50	0	2 20	6.3	134	. 0	8	610	5.7	13	_	675	1055	195		50.0	2.5	_	0.45	24,000 L 22,000 C 28,000 R
5	16	66	98.0	17.22	0.66' Deep 5.0	6.3	Brown	5	0	240	5.8	22	0	20	480	5.0	14	_	480	980	130	-	24.0	8.1	. -	0	24,000 L 17,000 C 11,000 R

I. FROM PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES.
2 FROM U.S. GEOLOGICAL SURVEY SERVICE. (WATER RESOURCES DIVISION)
3. ALL RESULTS ARE IN PPM EXCEPT WHERE NOTED.

(I)EXHIBIT II

CHEMICAL & BACTERIOLOGICAL CHARACTERISTICS

REDSTONE CREEK @ WALTERSBURG

SHEET NO. 2 OF 3

	DAT	E		FIELD) ANA	LYSIS	T		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	ΙΔR	ORAT) R Y	^	NALY	/818		· · · · · · · · · · · · · · · · · · ·						DACTEDIA
-	T	T	1	 	T	T		T	T	1	T		Ι _	T ~	1	T	T -	T	1	Т	<u> </u>	· ·	1	T	т	1	BACTERIA
MONTH		YEAR	STREAM FLOW	TEMPERATURE (DEGREES C)	٥٥	H (UNITS)	APPEARANCE (NO UNITS)	COLOR (PT.CO STD.)	ODOR (UNITS	TURBIDITY (UNITS)	H (UNITS)	ALKALINITY	ACIDITY (pl 4	ACIDITY (pH 8	HARDNESS	B. O. D.	CHLORIDE	FLUORIDE	SULFATE	TOTAL SOLIDS	SUSPENDED SOLIDS (TOTAL)	ALUMINUM	IRON (TOTAL)	MANGANESE	SOLUBLE ORTHO - PHOSPHATE	ABS	COLIFORM ORGANISMS MPN / 100 CC
8	18	66	44.0	20.0	0.83' Deep I.O	6.3	Rust	5	Distinct Dis - agreeable	80	5.6	20	0	16	555	5.0	11	-	660	1215	200	-	28.0	4.3	_	0.55	92,000 C 54,000 R
11	7	66	217.0	4.44	l'Deep O	6.6	Orange	15	Faint Earthy	320	5.2	18	0	180	598	9.0	27	-	1400	2728	280	-	72.0	8.5	-	0.5	-
2	<u> '</u>	67	40.1	-	0.5 Deep 3.0	6.7	Brown	150	Faint Hydro - carbon	60	5.8	51	0	6	440	9.0	51	-	480	1226	152	0.14	56.0	2.5	0	0.38	2,400,000 540,000
4	24	67	177.0	11.1	0. 5' Deep 6.0	6.6	-	40	-	60	6.3	41	0	0	360	5.0	11	-	340	680	48	Ö	25.0	0.4	0	0.05	-
7	27	67	16.5	18.0	0	6.1	_	1.5	Faint Earthy	105	3.3		0	120	1150	0	19	_	1200	2930	120	3.9	160.0	170		0.20	3,500 L 1,100 R
10	16	67	48.8	16.0	0. 5' Deep 0	6.2	Very Rusty	5	_	380	4.7	4	0	240	1760	5.0	0	-	1700	2752	110	1.42	200.0	5.0	0	0.13	35,000 C 9,200 C
<u> </u>	24	68	205.0	1.0	1 Deep 9.0	6.8	Decidedly Rusty	10	Very Foint Musty	60	6.5	³51	0	0	234	2.8	20		288	634	30	1.85	32.0	0.5	0	0	160,000 C
4	16	68	57.0	11.0	3'Deep I.O	6.0	Very Rusty	70	Very Faint Earthy	180	5.7	21	0	10	562	6.0	15	-	760	294	32	0.75	70.0	2.0	0	0.30	130 L 54,000 R
7	2	68	-	-	-		S 0 = 1 2 14 PPM	-	K = 7.5PPM Na =175PPM	-	3.2	0	2.0as H ₂ SO ₄		1180Hdns Ca=275 Mg=120	-	28	0.3	1560	Diss. Solids 2460	-	0.6	0.8	6.0	-	-	NO3= 0.4 PP
7	4	68	26.0	14.0	0.0	6.3	Very Rusty	0	Decidedly Dis - agreeable	60	5.0	18	0	196	1320	0	21	-	1788	2996	114	0.19	80.0	8.0	0.04	0.53	9,200 L 3,500 R
10	7	68	29.0	13.0	0. 5 ' Deep 2.0	6.5	Very Rusty	5	None .	110	5.4	29	0	40	488	5.0	16		968	1420	132	0.20	28.0	3.4	0	1.30	350, 000 L 350, 000 C 350, 000 R
	7	69	51.6	1.0	0.5 ' Deep 4.0	6 .0	Very Rusty	30	Foint Earthy	150	6.1	69	0	0	288	16.0	4	0.1	575	1380	124	1.60	64.0	1.65	0.01	0.60	2,400,000 2,400,000 2,400,000
2	20	69	-	-	-	-	<u></u>	-	No=122	-	5.8	4	0		695Hdns Ca=176 Mg=63		20	-	887	Diss. Solids 1330	-	-	-	-	-	-	NO3 = 10
3	26	69	-	-	-		-	-	Na = 60	-	7.7	38	0	0	355Hdns Ca = 96 Mg= 28	-	21	-	401	Diss. Solids 665	-	-	- -	•	-	_	NO = 8.8 PP
4	2	69	57.0	10.0	0.6 Deep 4.0	6.0	Very Rusty	40	None	135	6.2	47	0	0	498	8.0	25	_	640	1112	76	0.04	40	2. 5	0	0.25	970,000
5	S	69	-	-	<u> </u>	_	_		Na= 63	-	7.4	484	0	0	425 Hdns. Ca=106 Mg= 39	_	13	1	484	Diss. Solids 782	-	_	-	-	-		NO = 7.0 PF
7	9	69	63.0	Ç 19	0.6 Deep 3.0	L 6.8 C 6.7 R 6.6	Very Rusty		Very Foint Eorthy	60	6.5	58	0	0	494	0.6	20	—	510	860	94	0.03	24	1.81	0.03	0.18	24,000
10	I	69	22.0	C 15	0.0	L 6.5 C 6.4 R 6.4	Very Rusty	20 l	Very Faint Earthy	125	5.2	15	0	112	1240	5.8	27	-	1750	2614	148	0.12	90	5.85	0	0	70,000
	6	70	88.8	С 3	6.0 ,	L 6.6 C 6.6 R 6.6	Very Rusty	45	Very Faint Earthy	120	6.6	86 .	0	0	402	0.2	18	_	390	780	74	0.05	33.5	1.75	0	0.04	10,900

I. FROM PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES
2. FROM U.S. GEOLOGICAL SURVEY SERVICE (WATER RESOURCES DIVISION)
3. ALL RESULTS ARE IN PPM EXCEPT WHERE NOTED

() EXHIBIT I

CHEMICAL & BACTERIOLOGICAL CHARACTERISTICS

REDSTONE CREEK @ WALTERSBURG

-			<u> </u>	T							V				<u> </u>	WAL			, (()						SHEE	T NO	3 OF 3
	DAT	E T		FIEL	D ANA	LYSIS								LAB	ORAT	ORY	Α	NAL	YSIS								BACTERIA
MONTH	DAY	YEAR	STREAM FLOW (CFS)	TEMPERATURE (DEGREES C)	DISSOLVED OXYGEN		APPEARANCE (NO UNITS)	COLOR (PT.CO STD.)	ODOR (UNITS)	TURBIDITY (UNITS)	H (UNITS)	ALKALINITY	ACIDITY (H4)	ACIDITY (H8)	HARDNESS	B. O. D.	CHLORIDE	FLUORIDE	SUL FATE	TOTAL SOLIDS	SUSPENDED SOLIDS (TOTAL)	ALUMINUM	IRON (TOTAL)	MANGANESE	SOLUBLE ORTHO – PHOSPHATE	ABS	COLIFORM ORGANISMS MPN / 100 CC
\$	8	70	168.8	C 10	7.0	L 6.8 C 6.8 R 6.7	Very Rusty	0	Distinct Earthy	160	6.6	36	0	0	320	1.1	16	-	340	670	82	0.15	11.2	1.32	0.05	0.03	
	29	70	0.6	4.7 -	-	L 7.2 C 7.2 R 7.2	Very Rusty	0	Distinct Eorthy	160	4.7	9	0	36	900	3.5	16	•	1080	1448	12.8	0.03	49	4.16	0	0	3, 480
	30	70	22.0	13	0	6.6	Very Rusty	0	Foint Earthy	50	5.1	6	0	102	1200	4.5	30		1300	2928	114	0	119.5	5.76	0.02	0.35	622
	5	71	9,95.0		10	7.0	Very Rusty	10	Very Foint Musty	160	6.8	38	0	0	140	3.5	11	•	88	612	180	0.05	13.6	0.80	_	0	1,609,00
,	31	71	6 2.0	7	3	6.0	Very Rusty	95	Very Foint Musty	80	6.5	45	0	0	610	•	16		605	1149	104	0.03	27.2	0.12	0.02	0.5	542,000
	8	71	-	19	0	7.0	Very Rusty	10	Foint Musty	6Q	5.5	32	0	152	1544	7.2	24	•	2135	3480	40	0.005	101.6	6.24	0.11	0.28	490
	5	71	0.90	17	0	6.4	Very Rusty	5	None	60	4.9	9	0	70	940	5.0	33		920	1892	64	0	52.0	5.08	0.01	0.45	120,000
	5	72	1.86	4.5	10	6.6	Very Rusty	8	Distinct Hydro - Carbon	100	6.3	58	0	0	96	5.3	16	•	362	494	180	0.074	20,4	0.86	0.05	O	30
_	29	72	1.43	6.0	4	L 6.2 R 6.3	Clear	0	Very Faint Musty	80	5.7	21	0	100	648	1.4	16	-	295	1304	112	0.23	37.5	0.05	0.08	0.15	15, 000
-	·													e .													
					-		:																				;
																				.:							: · · · · ·
		12										- 37 - 1 - 1					·		- -								\
+																											•
+								and the second s									·						•				
-														;							,			•			
$\frac{1}{1}$														i													
+																								:			
1	1																·	1									

I. FROM PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES
2. FROM U.S. GEOLOGICAL SURVEY SERVICE (WATER RESOURCES DIVISION)
3. ALL RESULTS ARE IN PPM EXCEPT WHERE NOTED

EXHIBIT III

Photographs of mine discharge at Phillips and weir installation

EXHIBIT III

Photographs of mine discharge at Phillips and weir installation

EXHIBIT IV

MINE DRAINAGE VOLUME

DISCHARGE TO REDSTONE CREEK AT PHILLIPS

Date	Head on Weircrest (feet)	Flow Mi. gal/day	Remarks
December 1969 10 11 12	0.55' 0.56' 0.59'	4.5 4.6 4.9	Cloudy with rain Cloudy with rain Cloudy-rain, early
13 14 15 16 17 18 19 20 21 22 24 27 28 29 30 31 31	0.55! 0.58! 0.58! 0.58! 0.58! 0.58! 0.57! 0.57! 0.57! 0.57! 0.57! 0.65!	4.88888777788877779022 4.4.4.4.4.4.4.4.55555	morning Cloudy Cloudy- snow Cloudy-snow Cloudy-snow Cloudy Cloudy-early morning Cloudy-early morning Clear cloudy-snow Cold-snow Cold-snow Cold & snow Cold & snow cold & snow cold & rain
January 1970 1 2 3 4 5 6 7 9 10 12 13 14 15 17 19 20 21 22	0.62' 0.60' 0.59' 0.59' 0.59' 0.57' 0.57' 0.57' 0.57' 0.57' 0.57' 0.61' 0.58'	5 0 0 0 0 0 0 0 0 0 0 0 0 0	cold & rain cloudy & cold cloudy & snow

Exhibit IV -	Continued		
23 24 25 26 27 28 29 30 31	.58' .58' .60' .61' .59' .60' .64'	8 8 8 0 0 9 0 9 0 2 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	cloudy & snow cloudy & rain
February 1970 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 256 27 28	.60 .62 .62 .62 .62 .62 .63 .61 .62 .63 .61 .62 .63 .61 .61 .62 .63 .61 .62 .63 .61 .62 .63 .61 .62 .63 .63 .64 .66 .66 .66 .66 .66 .66 .66 .66 .66	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cloudy & rain cloudy & rain cloudy & snow cloudy & cold cloudy sunny
March 1970 1 2 3 4 5 6 7 8 9 10 11 12	.61' .62' .64' .63' .62' .60' .61' .62'	5.05 5.05 5.00 5.00 5.00 5.05 5.05 5.05	sunny sunny rain rain rain rain rain rain rain rain

Exhibit IV	- Continued		
13 14 15 16 17 18	.63' .61' .61' .61' .65'	5.10 5.05 5.05 5.05 5.25	rain rain rain rain rain rain rain rain
19 20 21 22 23 24 25 26 27 28 29 30 31	.64 .64 .64 .65333 .64 .65588 .68 .68	5.20 5.20 5.20 5.20 5.20 5.20 5.25 5.25	3 pm after rain. rain rain rain rain & snow rain & snow Sample taken
April 1970 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	.67 .67 .6554	55555555555555566666666666665556 55555555	Sample taken after rain

Exhibit IV - Continued

May 1970 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	.71' .70' .70' .70' .70' .70' .70' .70' .70	66.000 000 000 000 000 000 000 00	Sample Sample	
June 1970 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	.69' .69' .68' .68' .68' .69' .69' .69' .69' .70' .70' .70' .70'	5.70 5.70 5.70 5.60 5.60 5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.7		

FAYETTE ENGINEERING COMPANY

Exhibit IV	- Continued		
21 22 23 24 25 26	.69' .68' .68' .68' .68'	5.70 5.60 5.60 5.55 5.60	,
July 1970 30 31	0.75' 0.58'	6.25 4.8	Day after a rain clear
August 1970 3 4 5 6 7 10 11 14	.65' 0.75' 0.65' 0.65' 0.65' 0.63'	5.25 6.25 5.25 5.55 5.25 5.10 5.10	Rain Day after a rain Cloudy Cloudy Clear cloudy clear cloudy

EXHIBIT V

MINE DRAINAGE CHEMICAL AND BACTERIOLOGICAL CHARACTERISTICS

DISCHARGE TO REDSTONE CREEK AT PHILLIPS

11.				in 2.2									
E. Coli MPN/100 m	1	I	i	Less than	ŀ	į	I	а	i	a	i	i	j
Alu- minum (ppm)	0	0.32	0.28	0.37	0.39	0.53	0.15	0.84	0.27	0.52	0.28	0.35	1.47
Man- ganese (ppm)	0	7.2	3.92	დ ე	7.62	7.3	7.2	7.8	2.6	11.6	0.04	7.8	7.3
on Dissolved (ppm)	292	11.2	26	133	205	165	252	230	248	225	162	275	128
Iron Total Di (ppm) (322	365	250	195	255	195	295	515	320	275	245	333	388
Sulfate (ppm)	1050	4750	4177	3500	3100	6050	4750	15500	5000	7000	1900	4750	4050
Acidity (to pH 8.3) (ppm)	0	270	340	797	250	544	4 24	276	326	520	-0-	532	334
Alkalinity (to pH 4) (ppm)	190	000	18	б П	& @ .~,	12	156	96	49	61	1320 (total)	156	20
Ħd	6.05	2.60	5.70	5.3	5.7	5.7	6.05	2.8	2.60		7. 1	5.0	7.8
Sampling Date	69/11/6	1/2/70	1/18/70	1/24/70	1/31/70	2/12/70	3/18/70	3/30/70	4/12/70	5/1/70 5.3	5/1/70(1)	2/6/70	7/31/70

Environmental Resources Pennsylvania Department of Sample Analyzed By (T)

EXHIBIT VI

RAW AND TREATED SEWAGE CHARACTERISTICS (1)

DURING TREATABILITY STUDIES

	DATE SUSPENDED SOLIDS (pp		NDED S (ppm)		CABLE IDS (ml/l)	B.0	.D.(ppm)	
	July,	1970	Raw	Eff	Raw	Eff	 Raw	Eff
	3	0	147	99			220	[*] 99
	3:	1	106	40	5.0	0.9		
	a.j							
Αι	ıgust,	1970						
	3		213	76	80	0.5		
	4		163	48	8.5	0.4		
	5		97	20	7.0	0.3		
	6		158	48	9.5	0.1	185	52
	7		125	38	7.5	0.1		
	10		281	98	13.0	0.8		
	11		177	52	7.5	1.0		
	12		175	52	8.5	0.6		
	13		147	80	6.0	1.0		
	14		148	60	9.0	0.8		

⁽¹⁾ Taken from McKeesport Sewage Treatment Plant Operating Records.

EXHIBIT VII

TABULATION OF TREATABILITY STUDIES

TEST NO. 1

Using Chlorine as Oxidizing Agent

		JAR NUMBERS								
		1 (:	2	3	4	5	G			
7/30/70	Sewage (ml)	150	150	150	150	150	0			
	MD (ml)	850	850	850	850	850 1	000			
	Chlorine Addi tion (ppm)	10	30	50	100	200 0				
	FerroussIron Test	Green	Clear Green	Very pale Green- Blue	Light Blue	Dark Blue (Green			
	Color of Sludge	Yellow- Orange	Orange	Slightly Dark Orange	Light Orange	Yellow Orange				
	Result of Fe ⁺⁺ Removal		Second Best	Best						

Comments:

Best range for the addition of chlorine to this ratio of MD to sewage is probably between 30 to 50 ppm of chlorine.

Using Lime Only

JAR NUMBERS

	1	2	3_	4	5	
Sewage (ml)	150	150	150	150	150	0
MD (ml)	850	850	850	850	850	1000
Lime Addition (ppm)	50ppm	lOOppm	200ppm	300ppm	400pp.	m O ppm
Ferrous Iron Test	Green	Light Green	Very Light Green	Yellow Green	Yello (Comp. Neg.)	w Dark Green
Color of Sludge		Brown- Orange	Brown	Dark Blue	Light Blue	Solids in the sewage did not fall-out.
Results of						

Results of Fe⁺⁺ Removal

Second Best Best

Comments:

Best range for the addition of lime to this ratio of MD to sewage is probably between 250 to 400 ppm and for complete removal of ferrous iron (Fe⁺⁺) 350 to 500 ppm.

Also a scum appeared on top of the solution in each of these jar tests. This scum is due to the air oxidizing the ferrous (Fe⁺⁺) during the stirring of the solution, thus, hindering sedimentation.

Using Lime and Chlorine

				JAI	RNUMI	BERS
	1	_2_	3	4_	_5_	6
Sewage (ml)	150	150	150	150	150	0
MD (ml)	850	850	850	850	850	1000
Lime Addi- tion (ppm) Chlorine ppm. Ferrous Iron Test		100 40 Light Blue			400 40 Clear Yellow	O O Dark Green- Blue
Color of Min. Sludge	Light Orange	Orang	Dark ge Greer Blue	Blue- n- Green	Light n Blue	Solids in the sewage did not

Results of Fe++ Removal

Second Best Best fall-out

Comments:

The lime was added first then stirred and allowed to settle. Then the chlorine was added; next, the solution was stirred again and allowed to settle.

Also the scum was almost totally removed, if the solution was not allowed to set for a long period of time. This was probably due to the addition of chlorine.

Best results occurred between the range of 250 to 400 ppm of lime with 40 ppm chlorine.

Best ranges for the addition of lime and chlorine are probably between 250 to 400 ppm lime and 30 to 50 ppm chlorine with the lime always being added first.

TEST NO. 4

Using Polymer Only

			J A	R NU	MBER	S
	1	2	_3_	4	_5_	6
Sewage (ml)	150	150	150	150	150	0
MD (ml)	850	850	850	850	850	1000
Calagon 269 Polymer Addi- tion ppm	0.1	0.3	0.5	1.0	2.0	0.0
Iron Test (Fe ⁺⁺)	Dark Blue	Light Blue- Green	Blue- Green	Light Blue- Green	Dark Blue- Green	Dark Blue- Green
Color of Sludge	-	-	-	-		Solids in the sewage did not fall-out
Results of Fe ⁺⁺ Removal		Best		Second Best		

Comments:

Best range for the addition of polymer to this ratio of MD to sewage is probably between .3 to .5 ppm of polymer, which is also the most economical range.

Polymer had no affect on changing the color of the sludge. Also a scum appeared on top of the solution in each one of these jar tests. This scum is due to the air oxidizing the ferrous iron.

During the stirring of the solution, with the ferrous precipitate being very fine and not settling out the scum also went from a brown to green in color, while appearing in other parts of the solution as a gray smoke swirling through the solution.

Using Polymer and Lime

				J A	R NUMB	E R S
	<u>l</u> :	2	3	_4_	5	6
Sewage	150	150	150	150	150	0
MD	850	850	850	850	850	1000
Lime Add. (ppm)	50	100	200	300	400	. O
Calagon 269 Polymer Addi- Tion (ppm)	0.1	0.3	0.5	1.0	2.0	0.0
Ferrous Iron Test	Green- Blue	- Green- Blue	- Light Green	Very Light Pale Green	Pale Green	Green- Blue
Color of Sludge	Orange	e Orange Brown	e- Brown Orange	Green- Blue	Blue	Solids in the sewage did not fall out

Results of Fe Removal

Second Best Best

Comments:

The test with 400 ppm lime and 2 ppm polymer seemed to over run its end point. The supernatant from this test became very cloudy with pin point ferrous precipitate and a very thick layer of ferrous scum.

Best range for the addition of lime and polymer to this ratio of MD to sewage is probably between 200 to 350 ppm lime and .3 to .5 ppm polymer.

Also a scum appeared on top of the solution in each one of these jar tests. This scum is due to the air oxidizing the ferrous iron during the stirring of the solution with the ferrous precipitate being very fine and not settling out.

TEST NO. 6
Using Lime Polymer & Chlorine

			JAR	N U M	B E R S	
	1	2	3	4	5	6
Sewage (ml)	150	150	150	150	150	0
MD (ml)	850	850	850	850	850	1000
РН			6.4	6.7	6.8	6.8
Chlorine Add. (ppm)	40	40	40	40	40	0
Lime Add. (ppm) 50	100	200	300	400	0
Calagon 269 Polymer (ppm)	. 3	.3	. 3	.3	· . 3 ·	0
Ferrous Iron Test	Dark Blue- Green	Blue- Green	Green	Light Yellow Green	Dark - Green- Blue	Dark Green- Blue
Color of Sludge	Light Orange	Orange	Dark Orange	Orange Brown		Solids in the sewage did not fall out
Results of Fe Removal			Second Best	Best	Should have had bet results	

Comments:

These results were probably due to the addition of the chlorine first than the lime. Therefore, to remove all the iron or for best ferrous iron removal add lime first then chlorine. Again a scum appeared on top of the solution in each of these jar tests.

Tests with 300 and 400 ppm lime combined with 40 ppm chlorine and no polymer were made. The results obtained were about the same as the tests using polymer. The best range for the addition of lime, chlorine & polymer to this ratio of MD to sewage is probably between 200 to 400 ppm lime, 30 to 50 ppm chlorine, and .3 to .5 ppm polymer. In this test 40ppm of chlorine & 0.3 ppm of polymer were used as the optimum dosage rates.

TEST NO. 7

Using Lime and Chlorine (Chlorine Constant)

				J A	R NUME	BERS
	1	2	_3_	_4_	_5_	6
Sewage (ml)	150	150	150	150	150	0
MD (ml)	850	850	850	850	850	1000
Lime Add. (ppm)	50	100	200	300	400	O
Chlorine Add. (ppm)	40	40	40	40	40	0
Ferrous Iron Test	Blue	Light Blue	Green	Yellow- Green	Dark Green- Yellow	Dark Blue- Green
Color of Sludge	Light Orang		Dark e Orange	Brown	Dark Green	Solids in sewage did not fall-out.
Results of Fe ⁺⁺ Removal				Best	Second Best	

Comments

Holding the chlorine constant at 40 ppm, the best range for the addition of lime is probably between 300 to 400 ppm. The lime was added before the chlorine. The best results were obtained using this procedure.

Also a scum appeared on top of the solution in each one of these jar tests. This scum is due to the air oxidizing the ferrous iron during the stirring of the solution.

TEST NO. 8

Using Lime and Chlorine (Lime Constant)

~	Λ	T .	7\7	TT	70.6	7	7	7	α
. 1	А	\mathbb{R}	N	11	IVI	ĸ	Η.	K	- 55
0	4 1	- L	7. //	0	T.T	سد		-L	\sim

	1	2	3	_4_	_5_	6
Sewage(ml)	150	150	150	150	150	0
MD (ml)	850	850	850	850	850 pH 6.8	1000
Lime Add. (ppm)	300	300	300	300	300	0
Chlorine Add. (ppm)	10	30	50	100	200	0
Ferrous Iron Test	Very Pale Green	Pale Green		Blue- Green	Yellow Completely Negative	Dark Blue- Green
Color of Sludge	Green	Bro	wn Brown- Orange	Dark Orange	Orange	Solids in the sewage did not fall-out
Results of Fe ⁺⁺ Removal	Second Best	i		Not a good test	Best	

Comments:

A layer of scum appeared on each of these jar tests except the one where 300 ppm lime and 200 ppm chlorine were added.

Best range for the addition of chlorine with 300 ppm lime already added is between 10 to 50 ppm chlorine for partial iron (Fe $^{++}$) removal, but for complete iron (Fe $^{++}$) removal with no scum forming 200 ppm chlorine is required.

TEST NO. 9

Lime With & Without Chlorine & Polymer

JARNUMBERS

	1	2	3	4	5	6
Sewage (ml)	150	150	150	150	150	0
MD (ml)	850	850	850	850	850	1000
Lime Add. (ppm) 100	200	300	300	400	400
Chlorine Add. (ppm)	4.0	40	40	0	0	0
Calagon 269 Polymer Add. (ppm)	• 5	, 5	. 5	0	0	0
Ferrous Iron Test	Blue- Green	Light Blue- Green	Green- Yellow	Very Pale Yellow Green	Green	Yellow- Brown
Color of Sludge	Light Orange	Orange	Dark Orange	Green	Ďark Green	Very Dark Green
Results of Fe ⁺⁺ Removal				Best	Green Due To Getting Scum in the pipe.	Second Best but has a scum problem.

Comments:

All tests with lime, chlorine and polymer added had only a very thin layer of scum, while these tests which added only lime still had a scum problem.

This test shows that best results are obtained with the addition of lime only at 300 to 400 ppm if scum removal is provided.

TEST NO. 10

Lime Recirculation

JAR NUMBERS

	1	2	3.	4	5.	6.
Sewage (ml)	150	150	150	150	150	150
MD (ml)	850	850	850	850	850	850
Lime Add. (ppm)	50	100	150	0 Sludge from Jar l	0 Sludge from Jar 2	0 Sludge from Jar 3
Lime Add. (ppm)	0	0	0,	25	50	75
Ferrou s Iron Test	Blue	Green	Very Pale Green	Blue	Dark Blue	Dark Blue
Color of Sludge	Light Orange	Orange	Dark Orange	Dark Orange	Green	Green
Results of Fe ⁺⁺ Remo v al		Second Best	Best			
Comments:	Recircu	lation o	f the sl	udge pro	oduced i	n Jars

Recirculation of the sludge produced in Jars 1, 2, and 3, with the addition of more lime, does not aid in the removal of the ferrous iron.

Aeration of Mine Drainage

Volume of Mine Drainage (ml)	1000
Aeration Time (Hours)	3
Settling Time (Hours)	3
Amount of Ferric Iron Precipitate (ml/l)	6.5
Ferrous Iron in Supernatant (Color)	Dark Blue

TEST NO. 12

Aeration of Mine Drainage

Volume of Mine Drainage (ml)	1000	
Aeration Time (Hours)	3	
Settling Time (Hours)	24	
Amount of Ferric Iron Precipitate (m1/1)	5.5	
Ferrous Iron in Supernatant (Color)	Dark I	Blue

Comments: This process is an excellent way of converting a large percentage of the ferrous iron to the ferric state. The supernatant at first appears to be very clear, but a closer observation shows that even after 24 hours of settling there is still some very fine pin point Floc in the

supernatant.

Aeration Test (Sew.&MD)

	Jar Numbers	
	1	2
Supernatant From Aeration Test No. 11 (ml)	500	250
Sewage (ml)		50
Initial Lime Add. (ppm)	100	200
Ferrous Iron Test	Dark Blue	Dark Blue
Lime After Recircu- lation (ppm)	100	100
Ferrous Iron Test	Yellow Going to Very Pale Green	e Clear
Results of Fe ⁺⁺ Removal	Good	Good

Comments:

It appears that to remove the ferrous iron from the MD only, you will only have to use 200 ppm lime, while to remove Fe++ from the MD to sewage in a 6:1 ratio you will need 300 ppm lime.

No scum appeared on top of any of these solutions.

Aeration on Mine Drainage

(With Varying Settling Times)

Volume (ml)	1000
Aeration Time (hours)	24
Settling Times (hours)	
Jar No. 1 Jar No. 2	None 4.5
Ferric Iron (ml/l)	
Jar No. 1 Jar No. 2	2 4
Ferrous Iron (Color)	
Jar No. 1	Dark Blue

Comments:

Jar No. 2

In this experiment the Floc appeared to be too fine after long aeration periods.

Dark Blue

Two to three hours aeration time appears to be adequate for proper settling.

TEST NO. 14
24 Hr. Aeration With Lime Addition & Recirculation

	Jar No. l	Jar No.
Mine Drainage (M1) (Supernatant from Test # 14)	500	500
Lime Add. (ppm)	200	300
Lime After Recir- culation (ppm)	50	0
Ferrous Iron Test	Yellow	Yellow
Results of Fe ⁺⁺ Removal	Complete Iron Fe ⁺⁺ Removal	Complete Iron Fe ⁺⁺ Removal in one step
Comments:	Best range, for the lime to this aeras of MD only, is proto 300 ppm lime.	
	Also, no scum appe solution after st	ears on top of irring and setting.

Short Aeration Period

Volume of Mine Drainage (M1)	1000
Aeration Time (hours)	2
Settling Time (hours)	2
Amount of Ferric Iron (ml/l)	7
Ferrous Iron Test (Color)	Dark Blue

Comments:

The supernatant resulting from this test is much more clear than any other aeration test. Thus, 2 hours aeration and 2 hours settling gives the best results for settling out the ferric iron. No scum appears on top of any of the aeration tests.

2 hr Aeration with Lime Addition And Recirculation

Mine Drainage	<u>Jar No 1</u>	Jar No 2
(Supernatant - Test # 16 Lime Add. (ppm) Settling Time (minutes)	500 100 20	500 200 20
Ferrous Iron Test Lime after Recirculation (ppm)	Dark Blue 100 ppm	Yellow None
\ - - /	Too bbm	(not recir- culated)
Ferrous Iron Test Results of Fe++ removal	Dark Blue	3 3.2 3 3 3 3.7
Comments	Door manage	Best
	of Lime to t natants of	r the addition his aerated super-MD only, is
	around 200 p all at once.	pm lime added
	Again the re lime sludge	circulation of and adding more
	lime did not removal of t	increase the he ferrous iron scum appeared

TEST NO 17

Sewage-MD and Recirculated Sludge

8/5/70	Volume of Sewage (ml)	150
	Volume of Mine Drainage (ml)	850
	Recirculated Sludge (ml) Ferrous Iron Test (color) Results of Fe++ Removal Comments	Dark Blue Poor Supernatant in this jar test was very cloudy with a layer of scum.
		At this MD to sewage ratio Ferric Iron did not aid in floc formation.

2 Hr Aeration, 20 Hr Settling

Volume of Mine Drainage (ml) 1000 Aeration Time (hours) Settling Time (hours) 2 20 Amount of Iron Precipitate (ml/l) 6 Ferrous Iron Test (color) Dark Blue Comments Aeration for 2 hrs seems to be the best time of aeration needed to precipitate as much Fe++ as possible, while settling volume increases as settling time increases.

TEST NO 19 Aeration Followed By Lime And Polymer Addition

	<u>Jar No l</u>	Jar No 2
Sewage (ml) Mine Drainage (ml)	100	100
Supernatant after 2 hr.	500	500
Aeration and 2 hr settling Lime add. (ppm)	100	200
Calagon 3000 Polymer add (ppm)	0.5	0.5
Ferrous Iron Test	Dark Blue	Light Blue- green
Color of Sludge	Orange	Green-Brown
Results of Fe++ Removal	Very poor	Poor
Comments	Polymer did not removal.	imprave iron

Aeration with Lime Addition

Volume of Mine Drainage (ml)	1000
Lime Addition (ppm)	50
Aeration Time - hours	2
Settling Time - hours	2
Amount of Ferric Precipitate -ml/l After 2 hours After 24 hours	12 13
Ferrous Iron Test (color)	Dark Blue

Comments

Supernatant very clear. Process appears to remove greatest amount of iron.

TEST NO 21

Test No 21 With Recirculation

	Jar No 1	Jar No 2
Supernatant (ml) Test No 21	500	500
Lime Add. (ppm)	100	150
Ferrous Iron Test	Dark Blue	Light Blue
Results of Fe++ Removal	Very Poor	Poor
Comments	Results show that	

2 Hr. Aeration, 2 Hr. Settling With Lime

Volume Mine Drainage (ml)		850
Volume Sewage (ml)		150
	Jar No 1	Jar No 2
Supernatant After Aeration and Settling (ml)	500	500
Lime Add (ppm)	200	300
Ferrous Iron Test	Very Pale Yellow Green	Yellow
Color of Sludge	Green-Brown	Green-Brown
Results of Fe++ Removal	Second Best	Best
Comments	At a ratio of MD, Sewage of 6 to 1 Best Process appears to be to oxidize ferrous iron with air for 2 hours and settle for 2 hours. Lime in concentrations of 200 to 300 ppm should be added first.	

EXHIBIT VIII

ph of mine drainage at phillips

DURING TREATABILITY STUDIES

DATE	pH after + 1 hour	Holding Time (hours)	pH (1)	Comments
July 1970				
30	6.8			
31	6.8			
August				
3	6.8	8	6.8	Sample getting cloudy
4	7.0	32	6.8	Sample cloudy Build up of floc on bottom.
5	6.9	56	6.6	Same as 8/4
6	6.8	80	5.8	Same as 8/4
7	6.8	104	5.5	Supernatant beginning to clear - orange sludge forming
10	6.7	176	5.3	Supernatant clear. Scum on top of sludge of fine floc formed.
11	6.8			
14	6.7			

⁽¹⁾ Sample was left open to atmosphere. Drop in pH explained by ${\rm CO}_2$ being absorbed into sample forming carbonic acid. Oxidation of ferrous iron to ferric iron develops in process and floc develops.

ExhibitIX

Preliminary Estimates of Construction Costs

Combined Sewage - Mine Drainage Treatment

Project

Sewerage Or	nly	
Ra	ankin Run Interceptor	160,000
Re	edstone Creek Interceptor	100,000
Ае	eration Tank - Structures	92,000
Ае	eration Tank - Equipment	20,000
Se	ettling Tank - Structures	18,000
Se	ettling Tank - Equipment	15,000
Ch	alorine Contact Tank	61,000
Ex	cavation & Backfill	12,000
El	ectrical	20,000
Combined Mi	ne Drainage & Sewage	
F1	ash Mixer - Structure	60,000
Fl.	ash Mixer - Equipment	40,000
Ox	idation Tank - Structure	200,000
Ox	idation Tank - Equipment	60,000
	nal Settling Tank Thickener - Structure	120,000
	nal Clarifier - Thickener Equipment	80,000
Sli	udge Drying Lagoon	40,000
Exc	cavation and Backfill	24,000
	emical Feed and Mixing Equipment	75,000

FAYETTE ENGINEERING COMPANY

Exhibit IX - Continued

Control and Chemical Storage Building 300,000	
Pumping and Misc. Control Building Equipment 150,000	
Outfall Structure 10,000	
Piping 200,000	
Instrumentation and Controls 125,000	
Electrical Work 125,000	
Heating, Ventilating, Plumbing 50,000	
Miscellaneous Outside Work 40,000	WAA-WAA
Total Construction Costs	\$ 2,197,000
Engineering Legal, Financing, Interest, etc. and Contingencies Lands & Rights-of-Way	653,000
Total Project Cost	\$ 2,850,000

Exhibit X

Preliminary Estimate of Annual Operation Maintenance and Administration Costs
Combined Sewage - Mine Drainage Project

Operation and M	Maintenance	
	Plant Superintendent	\$ 10,000
	Plant Operators (2)	12,000
	Power	50,000
	Repairs	10,000
	Lubricants & Misc Parts	10,000
	Sludge Removal & Hauling	20,000
	Chemicals	65,000
	Transportation & Misc Supplies	2,000
	Water	5,000
Administration		
	Office Manager	10,000
	Billing and Collecting	5,000
	Office Supplies	500
	Telephone	250
	Auditor	250
	Insurances	800
	Engineering	1,500
	Legal	1,000
	Miscellaneous	1,700
	Total	\$ 205,000