Appendix D

	JOB CATAWISSA CREEK					
GEO-TECHNICAL SERVICES	SHEET NO OF					
Consulting Engineers & Geologists	CALCULATED BY DATE					
	CHECKED BY DATE DATE					
HYDROLOGY	D-2 - D10					
DOWN FLOW DES	1GN DII - D13					
	D14 - D18					
DEUM DESIGN						
DI						

.

JOB CATAWISSIA	CREEK				
SHEET NO	OF				
CALCULATED BY BM	L DATE 9/81				
CHECKED BY	DATE				
- AUDENRIED TUNNEL					

IO E	VALUT	ATE	PEA	KT	UNUS		ASCH	ARC	ES	
DATE	Qo	Q.	٨Q		PRECI	PITAT	103	LAG	5 00y 1725	Bangers
									13-3	3
8 /25	16.7	11.5	5.2	.95	1.2	2.1	2.1	40	.86	3 peaks on 1
										3 peaks
1 100		013		1.42	1.67	1.4>	619		1.10	
12/13	18.3	12.8	5.5	1.3	1.5	1.5	1.9	28	.96	
4-/13	23.2	16.7	6.5	.45	04,	-60	1.25	14	1.3	snow matt ?
4/27	25.0	17.2	7.8	1.05	1.25	1.25	1.25	19	0.8	
5/23	43.4	70.0	23A	2.5	3.7	3.95	4.65	34	2.68	
		· · · · · · · · · · · · · · · · · · ·								
ROBLE	M #	1 -								unoff NTO
			. <u>1</u> 12 - 1							RATIONS
Esnm	ATE	LDE	TIL	5. F	x 1-	1250	र F	200	2F 14	STO MINE P.
	5.45	NC -				0	0	A _		t 1.5 hr
· · · · · · · · · · · · · · · · · · ·							the state of the second s	·		t 2.1 L
		· · · · ·					6 01	ct 4	• • •	<u>t.</u>
			ر مهم م		A.C. 57					to 3 thours.
1			and the second		 I was a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-	trans and and a made	20 : , :			to 0.5 fps.
			÷		1		-11-12	· .	111	SEXANNED
	1	· •						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	A SINGLE

·

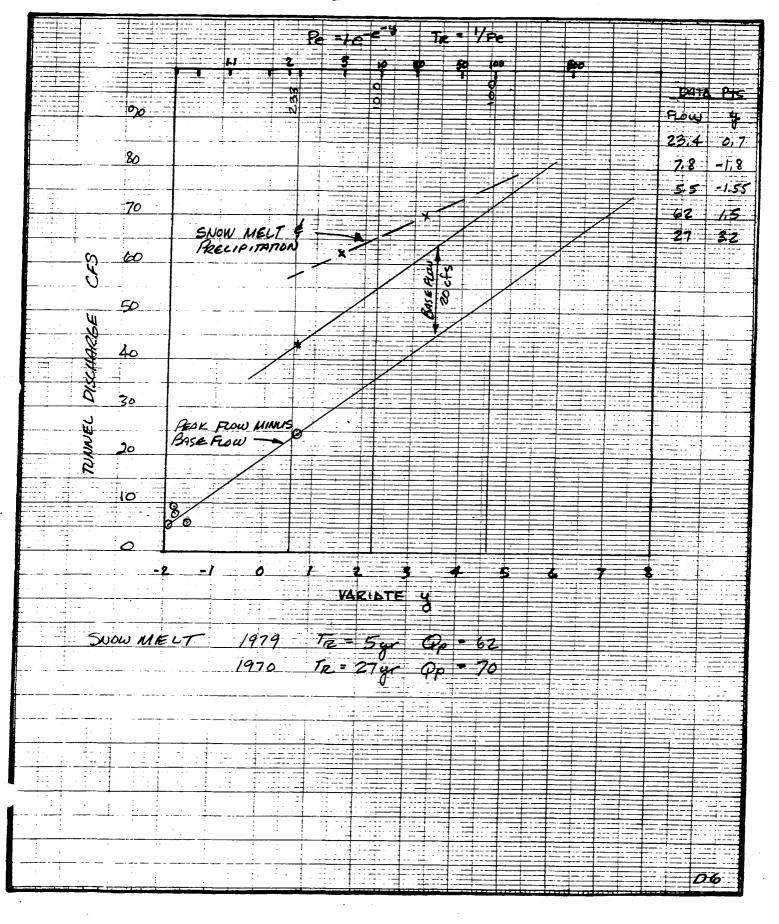
LE CATAMON OREK

SHEET NO CALCULATED F

81

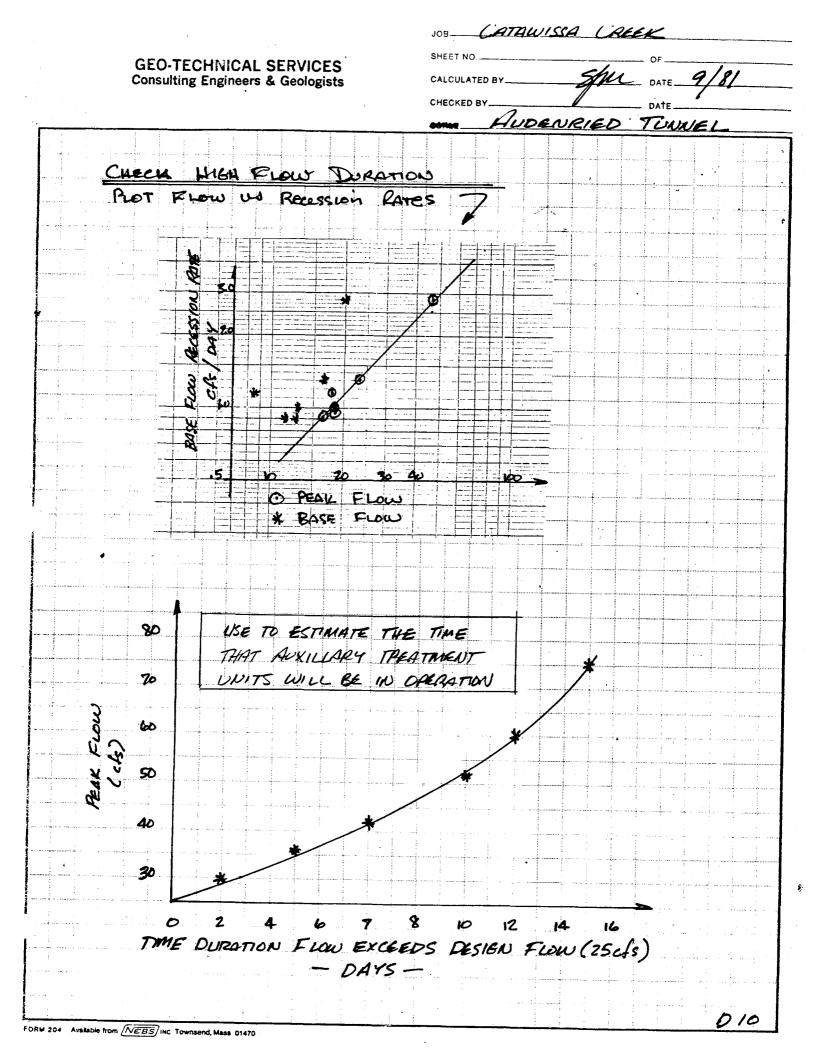
CHECKED BY

SCALE


UNINUISSA USERIL 10P -----SHEET NO __ M CALCULATED BY_ DATE CHECKED BY SCALE.

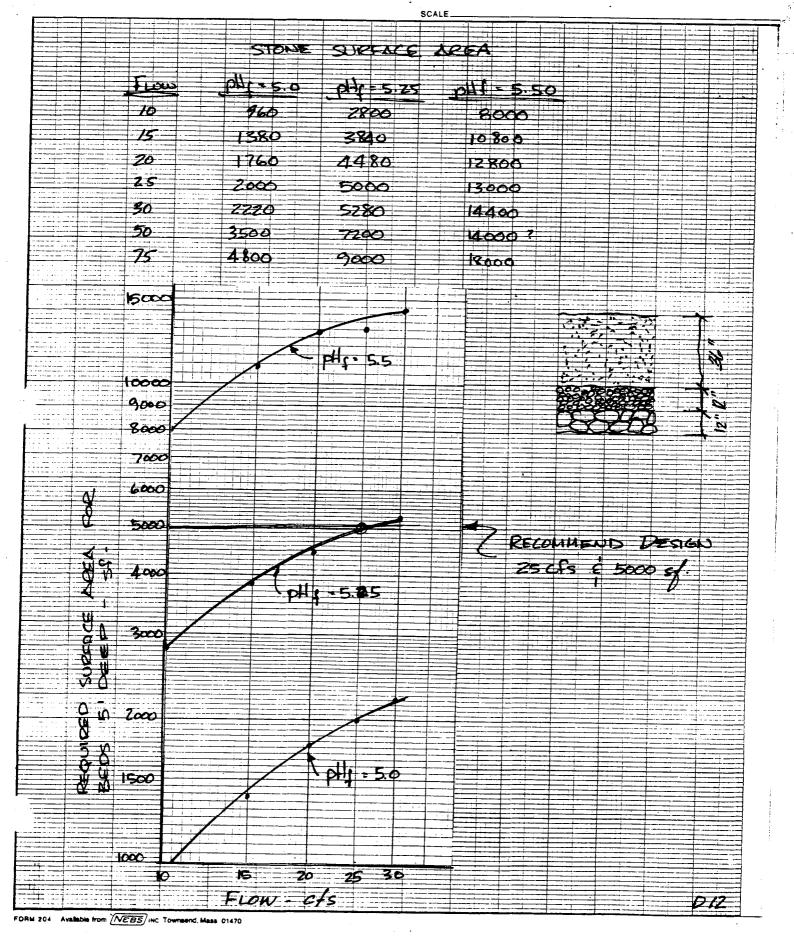
FOR LESS INTENSE STORMS THE TRIPLE PRAK EFFECT IS OBSURGO BY THE RISING LIMB OF THE MAIN (INFILTRATION) HYDROGRAPH THIS EFFECT IS SIMILAR TO HYDROBRAPHS OF STREAMS AFFECTED BY CAVERNOUS LIMESTONE CONTLITIONS. SIMILAR RESULTS WERE EACOUNTERED DURING A STUDY OF THE LATERT SPRING RUN IN CARCISLE FOR THE LETORT THE PEAK Pa. DISCHARGE APPEARED TO BE A FUNCTION OF THE BAINFALL VOLUME FALLING OVER A TIME PERIOD EQUAL TO TWICE THE HYDROSRAPH LAG TIME 48 HR PRELIPITATION VOLUMES APPEAR TO CORRELATE WELL WITH THE OBSERVED AUDENRED PEAKS **4**.0 3.0 20 () BASE FLOW VAUES APPEAR TO AFFERT ø 1. 0 PEAK IN THIS REGION DS 0.4 PEAK FLOW - BASE FLOW (CFS) 04

CISTAL	TSSA (FREK
SHEET NO	
CALCULATED BY	5/11- DATE 9/81
CHECKED BY	DATE
AUDEN RIED	TONNEL

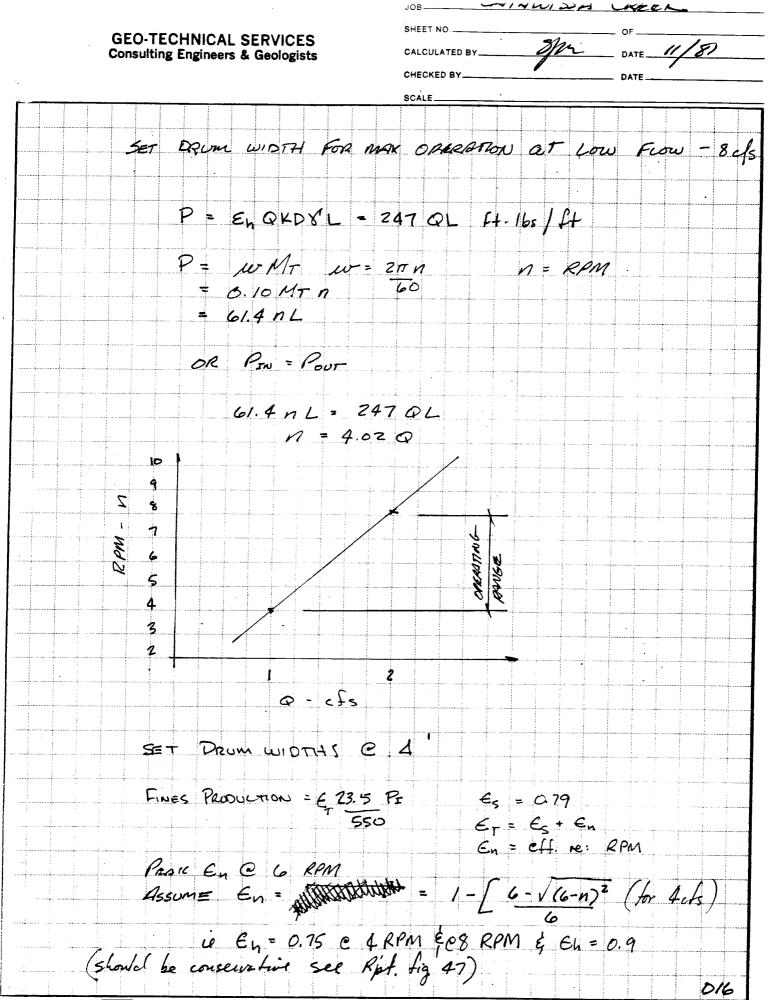

SHEET NO	OF	
CALCULATED BY	DATE	
	DATE	
SCALE	· · · ·	
		· · ·

JOB CATALISSA CREEK SHEET NO. **GEO-TECHNICAL SERVICES** CALCULATED BY_ DATE **Consulting Engineers & Geologists** CHECKED BY_ SCALE AUDENEILO TUNNEL SNOWMELT FREQUENCY CONTROLS LISE: DESIGN QP $\frac{T_{R}}{(4r)}$ (cfs) 57 2,33 65 10 72 * 50 76 + 100 DESIGN FLOWS : IDEALLY PROVIDE MAIN TREATMENT UNIT FOR 98% OF NORMAL FLOW CONDITIONS WITH A BYPASS TRESTMENT CAPACITY BETWEEN MEAN ANNUAL (2.33) AND OYEAR JUDGEMENT REQUIRED AS FLOW FOR STUDY PERIOD WAS GREATER THAN NORMAL (SEL NEXT SH.) * PEAK DISCHARGES ARE CAUSED BY GROUNDWATER RECHARGE INTO THE MINES. THERE FOR AT HIGH RETURN PERIODS THE DISCHARGE IS CONTROLLED BY THE PHYSICAL CHACTERISTICS OF THE ADDIFERS RATHER THAN RELIP. THEREFOR RELATIVELY LOW DISCHARGES CAN BE ANTICIPATED AT HIGH RETURN FREQUENCIES AS RECHARGE IS D7 FORM 204 Available from NEBS INC TOWNBERG MASS 01470

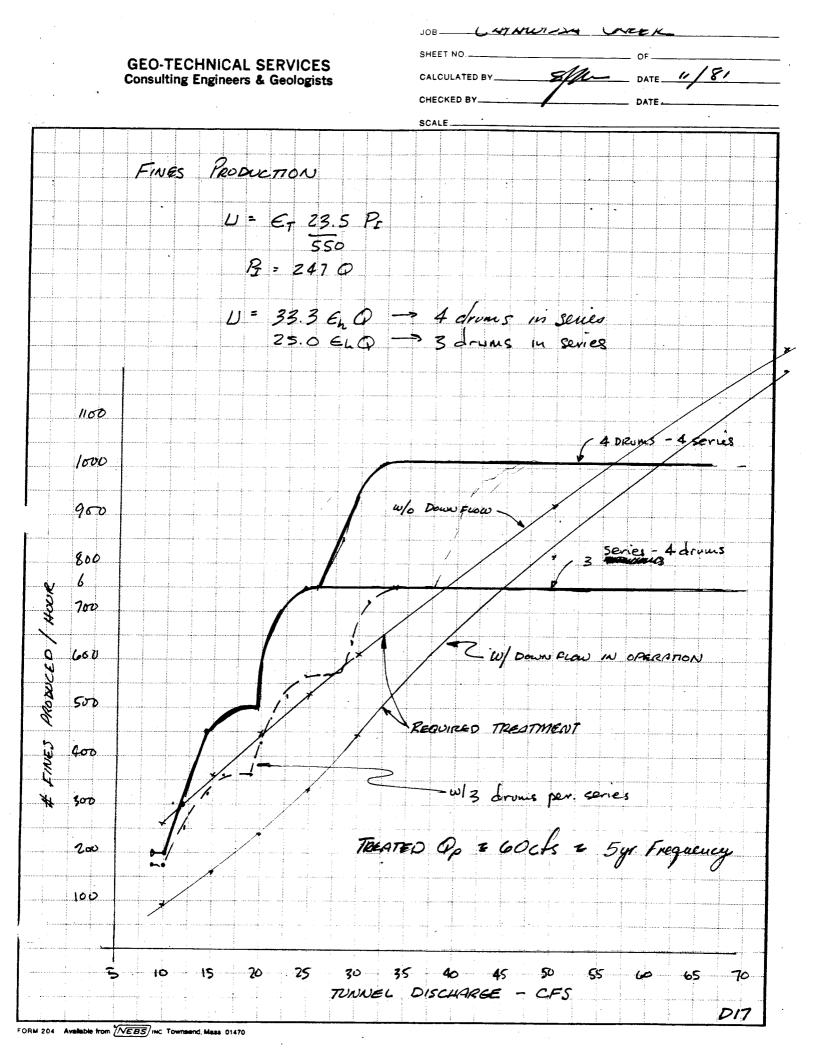
Catawissa Lieek JOB — SHEET NO. DATE 9/81 **GEO-TECHNICAL SERVICES** CALCULATED BY **Consulting Engineers & Geologists** CHECKED BY DESIGN FLOWS AUDENRIED TUNNEL -PRECIPITATION FOR YEAR OF RECOED 10 INCHES 9 STUDY PERIOD -7 8 Normal 7 6 PRECIPITY TON 5 0 O 4 3 0 2 6 1 0 2 8 178 17 5/29 10/78 12/78 9178 8178 178 3 TIME -MONTHS 3.4 BELOW NORMAL PRELIP. 15 to Dec. 78 JUNE 78 FOR 9.8 " ABOVE NORMAI PREUP 15 JAN, 79 to June 79 FOR NORMAL PRECIP, FOR SAMPLING PERIOD = 47.2" ~ 54.5 ALTUAL PRECIP. " OR 7" ABOVE NORMAL AVE FLOW PATES 12 cfs SUMMER/FALL 23 cfs WINTER / SPRING D 8 FORM 204 Available from NEBS INC Townsend, Mass 01470


CATAWISSA CRERK IOB SHEET NO. **GEO-TECHNICAL SERVICES** 9/81 DATE CALCULATED BY **Consulting Engineers & Geologists** CHECKED BY DATE AUDENRIED UNNE FLOW DISTRIBUTION FOR STUDY PERIOD 40 30 25 - mola 20 15 10 9 5 10 20 30 40 Ð 60 70 80 90 95 10 2 % TIME FLOW WAS LESS THAN VALUE PLOTTED 38% of THE FLOW WAS LESS THAN 40 cls La 50 % of the FLOW WAS LESS THAN 16 cfs Ę A DISCHARGE OF 26 CFS WAS EXCEEDED FOR 10% ÓR. OF THE TIME (40 DAYS) RECOMMENDED DESIGN FLOWS (a) 25 cfs main treatment units will handle flow 89°/0 OF THE TEATZ (10 325 days) (5) 75 cfs - MAX. TREATMENT W BY PASS DRUMS (c) 150 cts EMERGENCY BY PASS CAPABILITY D 9 FORM 204 Available from NEBS INC. Townsend, Mass 01470

54 135-11 Cataursson Cuch JOB_ SHEET NO **GEO-TECHNICAL SERVICES** DATE 10/81 CALCULATED BY **Consulting Engineers & Geologists** CHECKED BY. DATE HUDENRIED TUNNEL SCALE DESIGN PAROMETTERS Min . CT. p+1 FLOW ACID Fe_ ACID 504 3.5 350 10 3.50 320 290 32 3.55 310 3.0 15 340 280 20 20 280 3:60 300 2.75 26 270 3.70 200 25 2.0 250 20 180 30 3.70 150 1.5 720 20 130 3.75 10 110 50 125 170 16 3.75 125 75 1.0 150 16 110 * ESTIMATED BY COULDBEILMI CONDITIONS LOAD FACTORS FOR STATE BEDS R=0.5 REQUIRED pHr=5.25 pl= 5.0 pH1: 5,50 FLOW to 48 140 400 15 128 110 360 20 44 112 320 25 40 100 260 30 88 37 240 50 140 35 72 75 32 60 120 5' deep bods ASSUME 3' fine stone d= 0.25" d= 0.50" ned stone F d= 1.0 COARSE Ws = 90.5 . 0.225 T/SF 0.45 LF = Ws1 07 2000 REQUIRED STONG AREA = date : 204 .225 D#


LATTIWISSA CREEK JOB — SHEET NO .. DATE 11/8)

CALCULATED BY CHECKED BY



IDB UNIAUIDIAT LIKEE SHEET NO ... **GEO-TECHNICAL SERVICES** CALCULATED BY_ **Consulting Engineers & Geologists** CHECKED BY_ SCALE AUDENRIED TUNNEL ESTIMATE BACKWASH FLOW VOLUME FOR SETTING LAGOON SIZE (REF. "WATER SUPPLY & BUDTION CONTROL", CLARK, VIESSMAN & HAMMER) EXPAND BED >10% & < 25% $Le = L \left(\frac{1-e_o}{1-e_e} \right) \qquad e_o = 0.46 \qquad (porosity) \\ Le / L = 1.1 \qquad (L = bed depth)$ $e_e = 1 - \left(\frac{1 - e_o}{4e/L}\right) = 0.5/$ FOR INCIPIENT EXPANSION $e_e = \left(\frac{V_s}{v_r}\right)^{22}$ Vs = FACE VELOCITY $U_{5} = \left(\frac{4}{3} \frac{g}{6} \left(\frac{p-p}{a}\right)\right)^{0.5} C_{0} = \frac{p_{23}}{2} C_{0} C$ d = Due grain diameter Cp = 18.5 / Re Re = Reynolds No. Re = p Vs d / m Assume Vs = 156PM/SF = 0.033 FT/SEC Re = 4,26 $C_0 = 7.75$ Vs = 0.27 $C_{K} = (0.033)^{122} = 0.63 > 0.51 (BED WILL EXPAND)$ ASSUME BACILWASH TIME = 10 MIN LAGOON VOLUME = 5000 SF × 15 × 10 / 7.48 = 100,267 cf PROVIDE 100,000 CF LAGOON & ONE STANDBY (SAME STEE) D13 FORM 204 Available from NEBS INC Townsend, Mass 01470

JOB WYTHWISSA CALEK SHEET NO **GEO-TECHNICAL SERVICES** <u>Spm</u> _ DATE 11/81 Consulting Engineers & Geologists CALCULATED BY___ CHECKED BY DATE. SCALE DEFINE DRUM TREATMENT REQUIREMENTS Eff. A ALK USED . 0:67 A ALK PRODUCED REQ'D PRUDUCTION RATE = UR = 0.33 Dalk Q (#/m) #/40 DALK. Q 10 80 264 15 72 356 68 20 449 64 533 25 62 620 30 50 56 933 75 52 1300 - ESTIMATED - QUARAKE RED'D 40 - 44 mgl. AUK PLUS MINERAL DUDITY REQ'D PRODUCTION RATE W/ DOWNFLOW IN OPERATION Q AALK #/HR 10 20 99 32 159 15 36 20 238 40 25 330 **B**HQ 45 446 30 30 0 20 2 20 0 80 ppm NOMAR 816 50 30 0 10 45 0 52 75 1218 DI4 ORM 204 Available from NEBS INC Townsend, Mass 01470

LATOWISSA CREEK JOB-----SHEET NO ... **GEO-TECHNICAL SERVICES** 11/81 __ DATE____ CALCULATED BY **Consulting Engineers & Geologists** DATE. CHECKED BY SCALE DRUM DESIGN , st TRIAL Dalk = 80 FULL TREATMRNT H = AALK 4 = 80 = ZO.S 0.13(30) 0.13 A A= 30 W/ DownFLOW H= 55 - 14.1 .13(30) Assume TREATMENT OF 70 cfs - USE LARGE DOWNS TO REDUCE BILL NO. TRY 6 DRUMS (4 Tiers for full treatment) KD = 6.0 K= 1.5 D = 4.0 w/ 20 vanes E = 0.66 ٤ $M_{T} = 9.6$ or. $H_{T} = 614.4$ L ASSUME POWER TAKE OFF FOR DRUM FEED OR DERATION SO THAT MT = ME HOWEVER STONE FINES PRODUCTION SHOULD BE REQUED AS ONLY PORTION OF UT APPLIES TO STONE GRINDING FROM REPORT FIGURE 57 AT FLOW / Ft > 1.2 ± $\frac{MR}{MT} = \frac{460}{580} = 0.79 = 2000 \text{ USE AS GRINDING}$ Efficiency RATE - Es For FLOWS > 1.2 cfs/f4 DIS DRM 204 Available from (NEBS) INC. Townsend, Mass. 01470

BHEET NO .-**OF**

JOB CATAWISSA CREEK

CALCULATED BY TAG

<u>)|| 19|| 81</u> DATE ...

Consulting Engineers & Geologists					CALCULATED BY DATE DATE			
	•			CHECKED B	AUDENA	RIED TUNN	EL	
					•			
ANNI	JAL L	IMESTO	NE USE					
	•			LUMS - 1	- Diou	MFLOW -		
DURATION	DAYS	Fiow	FINES	TOT. FINES	ACID	LBS NEUT.	Total	
7.	145	cfs	Ibs/kr.	lbs	<u>9/241</u>	lbs	TOHS	
5-0	7.Z	6	150	25920	340	43540	34.7	
z-5	11	9	175	46200	330	96852	5 . ۲	
5-10	18.3	10	175	76860	320	173604	125.2	
10-20	3 6.5	12	260	227760	316	410318	319.0	
zo-30	365 m	13	300	262800	314	441698	352.3	
30-10	36.5	M	325	284700	312	472645	378.7	
40-50	36.5	16	350	306.600	308	533240	-419.9	
50-60	36.5	\mathcal{I}	365	319740	306	562.887	-441.3	
60-70	36.5	/8	365	319740	304	592105	455.9	
)- 8 0	3 65		430	376680	300	649238	513.0	
80-90	36.5	25	565	494490	200	541031	57.8	
90-95	18.3	30	680	298 656	150	2-44 131	271.4	
95-98	H	40	900	237600	140	182617	Z/0.1	
78-100	7.2	70	1010	174528	125	186767	180.6	
				ANNUAL	114re-Tr	NF ·	4291.4	
		011	*		· · · · · · · · · · · · · · · · · · ·		16/1.1	
USE KA	ILE FO	PHULAS				I (TONS)	· · · · · · · · · · · · · · · · · · ·	
Nule	TOT	FINES :	na ang sa					
DECUTIS			••••••••••••••••••••••••••••••••••••••					
		TOTAL	EINES =	FINES (16)	1-1 x Z4	hr/day x do	NC	
an a	1"	ICIAL		Times (103)	+		1-	
an a te t	••••••••••••••••••••••••••••••••••••••	,		··· · · · · · · · · · · · · · · · · ·				
March 1	4	S. NEUT:	· · · · ·			· · · ·		
Dunifu	<u> </u>							
in a constant	-	LRS AC	40 - LI	ACIDITY (40	NX FLC	W (&) x 5.	3901 × 2049	
		NEUTRA	UZED		, 2			
				en e				
		· · · · ·		u en en en en en				
	+ Deve	loped fr	own exper	rimental re	sults a	e Quakake		
		omes Com				· · · · · · · · · · · · · · · · · · ·	e sa	