Appendix H

GEO-TECHNICAL SERVICES Consulting Engineers & Geologists	CALCULATED BY	sper	OF OF
	SCALE	WLT#3	DATE
DESIGN PAT	TONALE		HI - HZ
HYDROLOGY			H3 - H5
CHEMICAL P	ARAMETER'	 S	H6
DOWNFLOW	Design		177
DRUM DESIG	≤ N		H8-HII
LIMESTONE	usage		H-12-H-B
ORM 204 Available from NEBS INC Townsend Mass 01470			· · · · · · · · · · · · · · · · · · ·

JOB CATAWISSA CREEK

CATAWISSA (REEK WLT# 3 TUNNEL #3 DESIGN IS COMPLEX : 1. Access to SITE IS DIFFICULT 2. TREATMENT OF TUNNEL A LONE LEAVES STREAM ACIDIC 3. TREATMENT BENEFITS TEND TO BE MARGINAL 4. MANY ALTERNATIVES PEQUIRE CONSIDERRATION NO TRRATMENT - ASSUME DILUTION FROM AUDENRIED WILL ADEQUATELY TREAT STREAM & TUNNEL 3 - UAUD BUT WRITES OFF SEVERAL MILES OF SALVAGABLE STREAM BLOCK TUNNEL & ALLOW OVER-FLOW TO GOTO WLT-Z TO BE TREATED - LEAVES STREAM UNTREATED & ACIDIC TREAT TUNNEL DISCHARGE ONLY - LEAVES STREAM ACIDIC , PARTICULARLY AT LOW FLOW (CI) TREAT AT SITE (CZ) FLUME TO AUDRIVEND SITE TREAT COMBINED FLOW AT SITE - ACCESS TREAT STREAM ABOVE SITE É TUNNEL FLOW AT SITE - INCREASED COST & LOW FLOW PROBUEMS

GEO-TECHNICAL SERVICES Consulting Engineers & Geologists

(a)

(c)

(d)

(e)

PROBLEMS

PIPE TUNNEL FLOW TO AUDENKIED

(ADVANTABLE - INCREASES STREAM MILES ARATED)

JOB LNI	AWI >>W	MIEK
		OF
CALCULATED BY	Spr	DATE
CHECKED BY		
SCALE	WLT#	<u> </u>

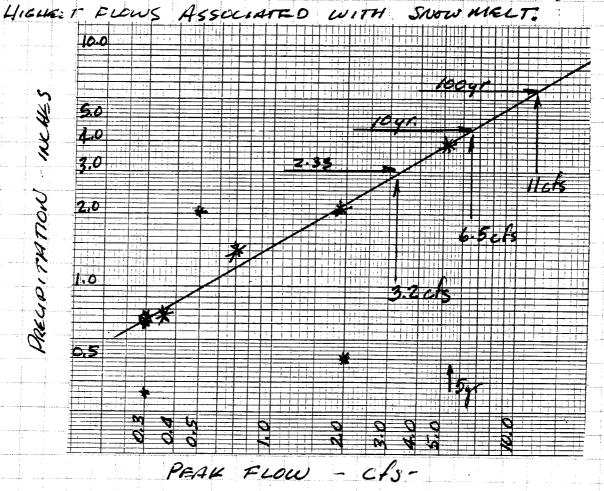
Or the alternatives available only a, die are viable as if the stream is not treated there is lattle point in treating the turnel as the Audenvied discharge will mask results.

Alternate (a) has the obvious advantage of cost.

IF RECLAMATION OF THE STREAM IS TO BE CONSIDERED THEN A COMBINATION OF (de) is appropriate.

- 1. Combining of the stream & tunned flow will be required for low flow treatment of the tunnel
- 2. At low flow additional acidity will probably be pickup particularity during low flow
- 3. Treatment at cc-z or futher upstream will maximize stream reclamation

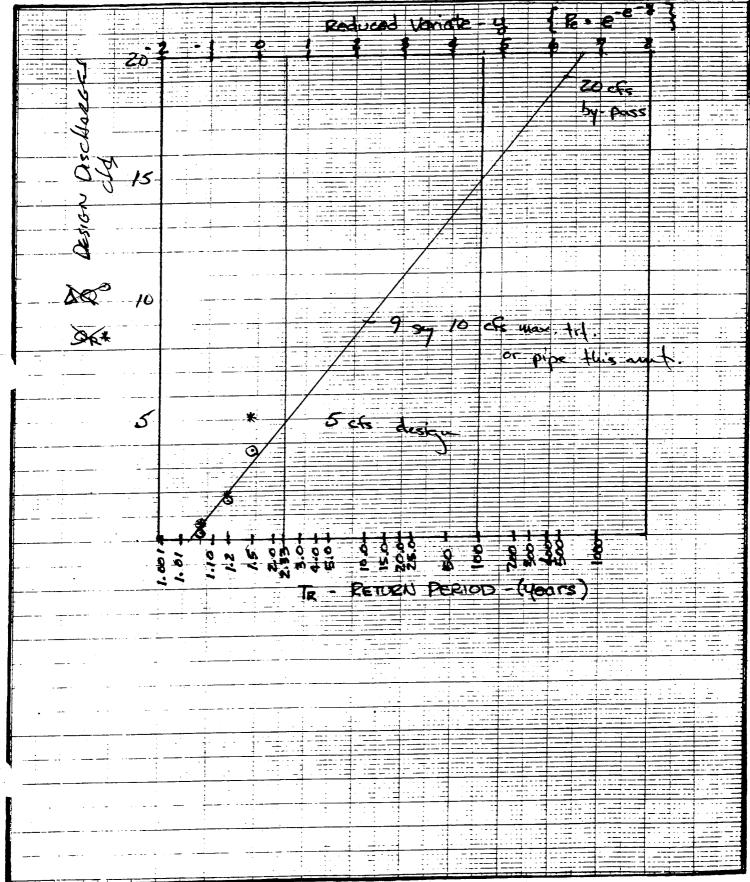
IN OTHERWOOD & WHOLE-HOE" OR NOTHING APPROACH IS RECOMMENDED


	300		
	SHEET NO.		OF.
EO-TECHNICAL SERVICES		ed.	/21

CALCULATED BY DATE 11/81

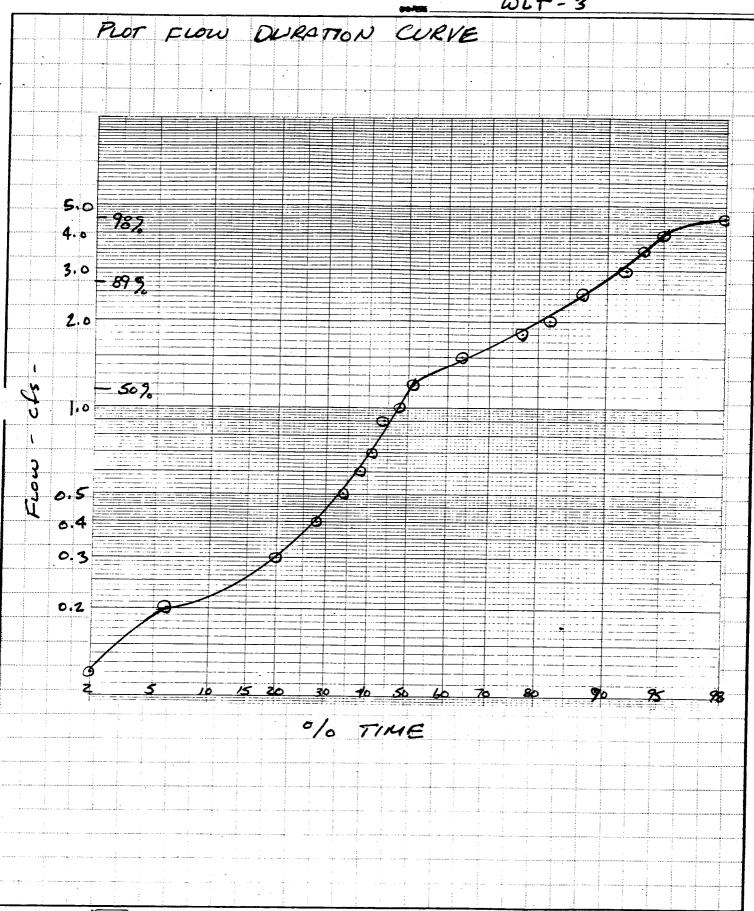
Consulting Engineers & Geologists

WLT-3


PLOT PEAK DISCHARGE US. PRACIPITATION (36 hr.)
RECORDS POOR HOWEVER 8 OF 10 RECORDED EVENTS
HAVE LAG TIMES GRASTER THAN 40 Hrs.

FREQUENCY ESTIMATE SHOULD BE ANUSTED FOR HIGH PLOWS CAUSED BY SNOWMELT

ASSUME 5 CFS = QZ.33


CATAWISSA LYEEK
SHEET NO OF
CALCULATED BY TAG & SAM DATE 11/81
CHECKED BY DATE
$\sim \omega LT-3$

SHEET NO. CALCULATED BY_ CHECKED BY. DATE.

CATAWISSA COREK

WLT-3

SHEET NO. OF DATE 11/8/
CHECKED BY DATE

WLT-3 TREATMENT DESIGN

CHEMICAL PARAMETERS FOR TREATMENT DESIGN

FLOW	Ha	ACIDITY	ALK*	CT*
-cfs-		ma/L	_ ma/s	
		.)	
۲.	3.56	65	-30	35
4	3.59	60	- 26	34
. 6	3.62	. 57	-25	32
. 8	3.67	54	-24	30
1.0	3.74	50	-16	34
Z	3.93	4Z	-10	32
. 4	3.95	<i>3</i> 6	-10	26
6	3.97	35	-10	25

ESTIMATE	REQUIRED	HEADS	FOR	Deum	TREATMENT	
<u>o</u>	A ACK	#			÷	
0.2	70 .	17.9			· · · · · · · · · · · · · · · · · · ·	-
0.4	66	16.9				
0.6	65	16.7				
0.8	64	16.4				
1.0	56	14.4				
2.0	50	12.8		•		
4.0	50	12.8				
6.0	SO	12.8	;	*		

USE SAME APPROACH AC WLT-Z ie - Downflow BEDS followed by single drum

* ESTIMATED FROM EQUILIBRIUM CONDITIONS

JOB-	CHLIMITESY	RE	rk.
SHEET NO		OF	
CALCULATED E	Slave	DATE	11/81
CHECKED BY_			·
	(11) -47		

DUE TO THE POSSIBILITY OF DIFFICULT ACCESS FOR
SHORF TO MRD. PREZIODS OF TIME - USE AMODIFIED
DOWNFLOW APPROACH.

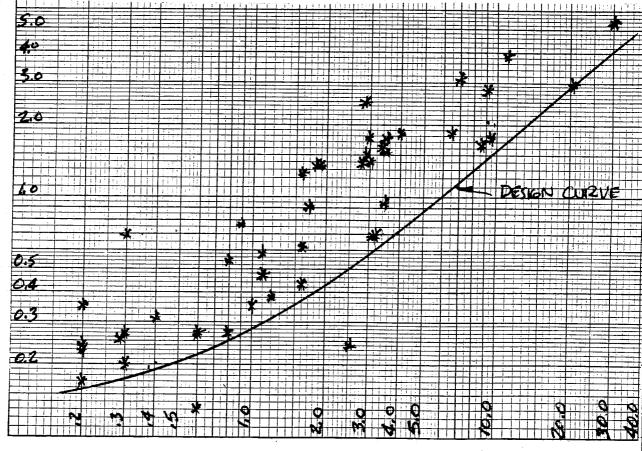
- 1. USE 12" SIZE STONE
- 2. BEDS TO BE LINEAR BARRIER WITH BACKWASH CAPABILITY
- 3. DESIGN FOR R=0.2 TO MALOW
 FOR LONGER BACKWASH PERIODS
 4 WEEKLY OF MOVE
- 4 PROVIDE STANDBY BRDS TO OPERATE
 BY OVERFLOW AND/OR MANUAL
 SWITCHING TO EXTRAD BACKWASH

 BYCLE

PROVIDE BED TREATMENT TO 1.0 CFS ±
TREAT REMAINDER WITH DRUMS

FLow	pH.	⊆ I	LE	SURFACE	AREA *
0.2	3.56	35	90	72	
0.4	3.59	34	85	136	
0.6	3.62	32	80	192	
1.0	3.67	30	75	300	
2.0	3.74	28	70	560	

*3' deep leds
Assumed flual pH=5.2


PROVIDE 3 - 5 WIDE BY
60'LONG BEDS

JOB	itawissa.	CIZE	EK	
SHEET NO.		OF		
CALCULATED BY	Spr	DATE_	11/81	
CHECKED BY	٠,			
	411.743			

ESTIMATE DRUM REDURE MENTS

From Dalle H 0.2 -> 1.0 40 10.25 1.0 -> 10.0 50 12.8

PLOT WIT-3 US. CC 3 to estimate low flow available to drive drum.

FLOW - CC3

770 - WOLT

SHEET NO. OF DATE 11/81

GEO-TECHNICAL SERVICES Consulting Engineers & Geologists

CALCULATED BY SAM DATE 11/81

CHECKED BY DATE

CHECKED BY DATE

Drums AT CC-Z WILL PROVIDE ADEQUATE TREATMENT AT FLOWS > 2 Cts CC-3 WLT3 FLOW Frow. .5 12 Assume ONLY Z cfs .4 2.0 3.5 .6 DIVERTED FROM STREAM 1.0 6.0 2.0 13.0

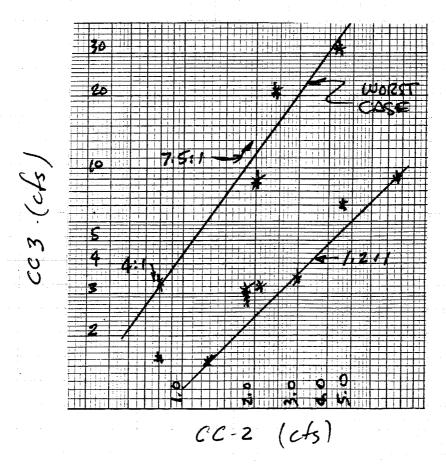
PRODUCTION REQUIRED.

FLOW	Delving Flow	REQ'D*	FINES ** PRODUCED
12	0.7	2.6	7.
, 4	2.4	5.3	26
, 6	2.6	7.9	28
1.0	3.0	13.2	53
2.0	4.0	33.0	44
4.0	6.0	66.0	74
6.0	0.8	99.0	90

+,33 * Dalk + Q

AS WIT-2

JOB_ CATAWISS	ia kreek	
SHEET NO.	OF	
CALCULATED BY	DATE 11/81	


CALCULATED BY	Shu	DATE 11/81
CHECKED BY		DATE
	WLT 43	

STREAM TIZEATMENT

DRAINAGE AREA CC-2 1.1 sq mi

CC-3 1.7 sq mi

DESPITE THE SMALL INCREASE IN DEPINAGE
APRAS A 7.5 TO 1 FLOW KATTO BETWEEN
CCZ & CC3 WAS OBSERVED AT HIGH FLOWS
AND 1.2 TO 1 AT MED. FLOWS

IT IS PROPOSED THAT OVERTREATMENT AT CC-Z
BE PROVIDED & HIGH FLOW DRUMS BE INSTALLED
AT CC-3/WLT-3 ONLY IF PROVEN NECESSARY

JOB CAT	AWISSA CE	*EK	
SHEET NO		OF	•
CALCULATED BY	gm	18/ 11 DATE	
CHECKED BY	U	DATE	
SCALE	WLT#3		

COSTS & DRUM SIZE SELECTION

ARE SITE-SPECIFIC & TOPO

OTHER THAN USGS IS NOT AVAILABLE

POR AN INSTALLATION AT CC-2

IT IS ESTIMATED THAT THE FULLOWING DIENS WOULD BE REQUIRED:

Z tiers of 3 drums (2 HIGH FLOW) ACCECS ROAD. 10' HIGH DAM STOCK PILE STORAGE

JOB CATAWISSA CREEK

GEO-TECHNICAL SERVICES Consulting Engineers & Geologists

CALCULATED BY TAG DATE 11/19/81

WLT-3

			-DR	WHS -	-Dou	MFLOW -	
DURATION	DAYS	Flow		TOT. FINES	ACID	LBS NEUT.	TOTA
7.	145	<u>cfs</u>	1bs/hr.	lbs_	IMA/D	lbs	TOHS
		of o	÷. ! . !				
5-0	7.2	.12/7	7	1361	65	167	\$.8
z-5		.35/.7	7	1848	65	318	1.1
5-10	18.3	.20/.7	<u> </u>	3074	65	705	1.9
10-20	36.5	.25/1.	1 /2	10512	60	1623	6.1
ZO-30	365	.35/2	4 26	22776	56	2121	12.5
50-40	36.5	. 5 0 /2.	5 27	23652	54	2922	/3.3
40-50	34.5	1.0 / 3.	0 33	28908	50	5410	17.2
50-60	36.5	1.3/3.	3 37	32-41B	46	6471	19.4
50-70	36.5	1.5/3	5 40	35040	42	6817	20.9
-80	365	2.0/4	1.0 44	38544	3 6	7791	23.Z
80-90	36.5	Z.O /4	5 52	45552	36	7791	26.7
90-95	18.3	2.0/6	.o. 74	32500	3 <i>S</i>	3798	18.2
75-98	H	2.0/6	.5 78	20592	35	Z2 83	11.4
78-100	7.2	2.0/8	3.0 90	15552	35	MgY	8.5
		/					
				ANNUAL	HMESTO	16	181.2
USE RA	TE FO	RHULAS!		CONSUL	MPTION	(TONS)	

TOTAL FINES = FINES (165/hr) x 24 hr/day x days

DOWNFLOW LBS. NEUT:

LBS. ACID = WKIDITY (ag/8) X FLOW (G) X5.3901 X Loys
NEUTRALIZED

* Developed from experimental results at Quakake.

* Assumer Complete Acid Removal (conservative limestone use estimate)

JOB CATAWISSA CREEK

GEO-TECHNICAL SERVICESConsulting Engineers & Geologists

CHECKED BY DATE DATE

AL	M	UA	L	UI	165	TON	E	US	E	•

			-DRUMS -		- Dou		
DURATION %	DAYS /yr	<u>cfs</u>	FIHES <u>Ibs/hr.</u>	TOT. FINES	ACID May 2	LBS NEUT.	TOTAL
0-2	7.2	.5	6:4	1106	· · · · · · · · · · · · · · · · · · ·	K	٥. 6
Z-5	11	.5	6.4	1690			0.9
5-10	18.3	1.0	14.3	6281	Ŏ,	<u> </u>	3.1
10-20	36.5	1.0	14.3	12527	7	in the second se	6.3
20-30	365	2.0	32.2	28207			14.1
30-40	36.5	2.0	32.2	28 207	3		14.1
40-50	36.5	2.5	39.Z	34339			17.2
50-60	36.5	3.0	46.1	40384			20.2
60-70	36.5	4	60.0	52560	0		26.3
10-80	36.5	6	90.0	78840	\ \ \ \	$\overset{\sim}{\mathcal{A}}$	39:4
80-90	36.5	8	120.0	1051 ZO			52.6
90-95	18.3	12	150	65880		:	32.9
95-98	H	16	180	47520		ه چه سپوند د ساد د د د د د د د	23.8
98-100	7.2	30	<i>30</i> 0	51840			Z 5.9

USE RATE FORHULAS *

ANNUAL LIMESTONE
CONSUMPTION (TONS)

. 2774

DRUMS TOT FINES:

TOTAL FINES = FINES (165/hr) x 24 hr/day x days

DOWNFLOW LBS. NEUT:

LBS. ACID = LI KIDITY (ag/8) X FLOW (&s) X 5.3901 X days
NEUTRALIZED

* Developed from experimental results at Quakake.

* * Assumes Complete Acid Removal (conservative linestone use estimate)