


### EXHIBIT B

### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

### JEANSVILLE BASIN MINE DRAINAGE ABATEMENT STUDY

### CONTROLLING INTERCONNECTIONS BETWEEN MINES DRAINED BY AUDENRIED DRAINAGE TUNNEL

| Interconnected Mines          | Type Of Interconnection                                                                                                                         | Elevation (1)                                                                                                                 |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Audenried Tunnel              | · _                                                                                                                                             | +1178                                                                                                                         |
| Audenried -<br>North of Fault | Rock tunnel                                                                                                                                     | +1348                                                                                                                         |
| Audenried -<br>Tresckow       | Continuous mining across<br>boundary in:<br>(a) Mammoth vein<br>(b) Wharton vein<br>(c) Gamma vein<br>(d) Buck Mountain vein<br>(e) Lykens vein | <ul> <li>(a) +1480 (3)</li> <li>(b) +1469 (3)</li> <li>(c) +1342 (3)</li> <li>(d) +1223 (3)</li> <li>(e) +1143 (3)</li> </ul> |
| Audenried –<br>Spring Brook   | Continuous mining across<br>boundary in Wharton vein                                                                                            | -                                                                                                                             |
|                               | Two 6-inch horizontal bore-<br>holes drilled from Buck<br>Mountain vein in Audenried<br>Mine to Lykens vein in Spring<br>Brook Mine (2)         | +1219                                                                                                                         |
|                               | Barrier pillar in Buck<br>Mountain and Lykens Overlap<br>and Underlap veins abrogated                                                           | +1300 (3)                                                                                                                     |

6.

Exhibit B Jeansville Basin Sheet 2 of 2

| Interconnected Mines              | Type Of Interconnection                                                                                 | Elevation (1)                                   |
|-----------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| North of Fault -<br>Spring Brook  | Barrier pillar in Buck<br>Mountain and Lykens Overlap<br>and Underlap veins abrogated                   | +1300 (3)                                       |
| North of Fault -<br>Beaver Brook  | Continuous mining across<br>boundary in:<br>(a) Gamma vein<br>(b) Buck Mountain vein<br>(c) Lykens vein | (a) +1480 (3)<br>(b) +1420 (3)<br>(c) +1350 (3) |
| Beaver Brook -<br>Spring Brook    | Continuous mining across<br>boundary in:<br>(a) Gamma vein<br>(b) Buck Mountain vein<br>(c) Lykens vein | (4)                                             |
| Spring Brook –<br>Spring Mountain | Rock tunnel connecting<br>Wharton vein workings                                                         | +1398                                           |
|                                   | Continuous mining across<br>boundary in:<br>(a) Buck Mountain vein<br>(b) Lykens vein                   | (a) +1148 (3)<br>(b) +1099 (3)                  |

- (1) Coal company based elevations.
- (2) Buck Mountain vein was subsequently gobbed in this location; this may cause a severe restriction in flow.
- (3) Minimum elevation at boundary.
- (4) Available mine maps show no interconnections; cross section maps of Spring Brook and Beaver Brook indicate continuous mining.

### EXHIBIT C

### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

### JEANSVILLE BASIN MINE DRAINAGE ABATEMENT STUDY

### CONTROLLING INTERCONNECTIONS BETWEEN MINES DRAINED BY QUAKAKE DRAINAGE TUNNEL

| Interconnected Mines               | Type Of Interconnection                                                                                                                              | Elevation (1) |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Quakake Tunnel                     | -                                                                                                                                                    | +1290         |
| Spring Mountain –<br>Coleraine     | Barrier pillar abrogated in<br>Mammoth Overlap vein                                                                                                  | +1470 (2)     |
|                                    | Barrier pillar abrogated in<br>Mammoth Underlap vein                                                                                                 | +1500 (2)     |
|                                    | Continuous mining across<br>boundary in Wharton vein                                                                                                 | +1580 (2)     |
| Spring Mountain –<br>Beaver Meadow | Two 10-inch horizontal holes<br>in dam constructed across<br>gangway connecting Wharton<br>vein in Spring Mountain to<br>Gamma vein in Beaver Meadow | +1334         |
| Coleraine –<br>Beaver Meadow       | Rock tunnel from Buck<br>Mountain vein in Coleraine<br>to Lykens Valley Shaft in<br>Beaver Meadow                                                    | +1329         |
|                                    | Continuous mining across<br>boundary in Wharton vein                                                                                                 | +1420 (2)     |
|                                    | Rock tunnel in Buck<br>Mountain vein                                                                                                                 | +1513         |

(1) Coal company based elevations.

(2) Minimum elevation at boundary.

EXHIBIT D

## COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

JEANSVILLE BASIN MINE DRAINAGE ABATEMENT STUDY

## MINE DRAINAGE VOLUMES, CONSTITUENTS, AND CHARACTERISTICS MEASURED AT AUDENRIED AND QUAKAKE TUNNELS DURING GAGING, SAMPLING, AND ANALYTICAL PROGRAM

|                                                           |           | 0        |         |        |         |        |        |         |         |        |        |         |         |         |
|-----------------------------------------------------------|-----------|----------|---------|--------|---------|--------|--------|---------|---------|--------|--------|---------|---------|---------|
| Total<br>Solids<br>(mg/l)                                 | 1         | 979 (1)  | ı       | ı      | ı       | ı      | ı      | ı       | I       | ı      | I      | 1       | ı       | I       |
| Sulfates<br>(mg/1)                                        | 660       | 500      | 480     | ı      | ı       | ı      | 366    | ı       | ı       | ı      | ı      | 488     | ı       | ı       |
| <u>Manganese</u><br>(mg/1)                                | I         | 8.1      | ı       | ı      | ı       | ı      | ı      | ı       | ı       | ı      | ı      | ı       | ı       | ı       |
| Aluminum<br>(mg/1)                                        | ı         | I        | ı       | I      | ı       | I      | I      | I       | I       | ı      | ı      | 1       | ł       | ı       |
| Total Iron<br>(mg/1) (1bs/day)                            | 402       | 530      | 802     | ı      | I       | I      | 336    | ı       | ı       | ı      | ı      | 521     | I       | I       |
| Tota.<br>(mg/1)                                           | 5.4       | 4.5      | 3.9     | ı      | ı       | ı      | 0.9    | ı       | I       | ı      | ı      | 3.3     | ı       | ·       |
| Acidity<br>(as CaCO <sub>3</sub> )<br><u>1) (lbs/day)</u> | 32,100    | 49,500   | 61,700  | I      | I       | ı      | 95,600 | ı       | 1       | ı      | ı      | 50,600  | 1       | 1       |
| Aci<br>(as<br>(mg/l)                                      | 432       | 420      | 300     | I      | ı       | ı      | 256    | ı       | ı       | ı      | I      | 320     | I       | ı       |
| linity<br>(lbs/day)                                       | 0         | 0        | 0       | I      | I       | ı      | 0      | ı       | ı       | ı      | ı      | 0       | ı       | ı       |
| Alkali<br>(mg/l) (                                        | 0         | 0        | 0       | i      | ı       | ı      | 0      | ı       | ı       | I      | ı      | 0       | ı       | ı       |
| Hd                                                        | 3.3       | 3.2      | 3.4     | ı      | ı       | ı      | 3.5    | ı       | ı       | 1      | ı      | 3.4     | ı       | ı       |
| Volume<br>(mgd)                                           | 8.9       | 14.1     | 24.6    | 25.8   | 17.9    | 18.4   | 44.6   | 28.7    | 27.7    | 22.8   | 22.2   | 18.9    | 20.7    | 17.9    |
| Date                                                      | 11-25-69  | 12-12-69 | 2-24-70 | 3-2-70 | 3-10-70 | 4-2-70 | 4-9-70 | 4-16-70 | 4-24-70 | 5-1-70 | 5-8-70 | 5-15-70 | 5-21-70 | 5-27-70 |
| Location                                                  | Audenried | Tallini  |         |        |         |        |        |         |         |        |        |         |         |         |

Sheet 1 of 3

| Total<br>Solids<br>(mg/l)              | ı         | 828       | 1      | ı      | ı              | ı              | I        | 520 (1)  | i       | I      | ı       | 1      | ı      | I       | ı       | ı        | ı      | ı       |  |
|----------------------------------------|-----------|-----------|--------|--------|----------------|----------------|----------|----------|---------|--------|---------|--------|--------|---------|---------|----------|--------|---------|--|
| Sulfates<br>(mg/l)                     | ı         | 454       | 550    | 548    | 500            | 490            | 480      | 380      | 390     | I      | ı       | I      | 230    | ı       | ı       | I        | 1      | 312     |  |
| <u>Manganese</u><br>(mg/1)             | I         | 6.7       | ı      | ı      | ı              | ı              | ı        | 4.2      | 1       | I      | ١       | I      | T      | ı       | ı       | ı        | 1      | ı       |  |
| <u>Aluminum</u><br>(mg/1)              | ı         | 17.9      | I      | ı      |                | I              | ı        | ı        | ı       | I      | I       | I      | I      | t.      | 1       | 1        | I      | I       |  |
| Total Iron<br>(mg/l) (lbs/day)         | 1         | 368       | 417    | 458    | 618            | 608            | 329      | 143      | 344     | ı      | ı       | ı      | 238    | ı       | ı       | ı        | ı      | 350     |  |
| • •                                    | 1         | 3.9       | 6.8    | 3.4    | 8.2            | 7.8            | 5.4      | 1.6      | 2.5     | ı      | ı       | I      | 0.7    | ı       | ı       | I        | I      | 2.0     |  |
| Acidity<br>(as CaCO3)<br>(1) (1bs/day) | I         | 32,500    | 20,900 | 50,100 | 26,100         | 27,300         | 20,700   | 21,100   | 30,500  | I      | ı       | I      | 54,300 | ı       | ı       | I        | ı      | 33,500  |  |
| Aci<br>(as<br>(mg/1)                   | I         | 344       | 344    | 372    | 348            | 352            | 340      | 236      | 228     | ı      | I       | I      | 160    | I       | I       | I        | I      | 192     |  |
| kalinity<br>(lbs/day)                  | ı         | 0         | 0      | 0      | 0              | 0              | 0        | 0        | 0       | I      | I       | I      | I      | ı       | ı       | I        | I      | 0       |  |
| Alka<br>(mg/l)                         | I.        | 0         | 0      | 0      | 0              | 0              | 0        | 0        | 0       | I      | ·       | ı      | ı      | ı       | ı       | ı        | ı      | 0       |  |
| Hd                                     | I         | 5.3       | 3.3    | 3.4    | 3.2            | 3.2            | 3.2      | 3.4      | 3.5     | ı      | ī       | ı      | 3.6    | ı       | ı       | i<br>I   | ı      | 3.4     |  |
| Volume<br>(mgd)                        | 16.3      | 11.3      | 7.3    | 16.1   | 0.6            | 9.3            | 7.3      | 10.7     | 16.0    | 15.7   | 13.6    | 33.6   | 40.6   | 27.9    | 22.3    | 26.6     | 20.0   | 20.9    |  |
| Date                                   | 6-4-70    | 6-11-70   | 7-9-70 | 8-5-70 | 9-11-70<br>(2) | 9-11-70<br>(3) | 11-25-69 | 12-11-69 | 2-24-70 | 3-2-70 | 3-10-70 | 4-2-70 | 4-9-70 | 4-16-70 | 4-24-70 | . 5-1-70 | 5-8-70 | 5-15-70 |  |
| Location                               | Audenried | (Cont'd.) |        |        |                |                | Quakake  | raillini |         |        |         |        |        |         |         |          |        |         |  |

Exhibit D Jeanșville Basin Sheet 2 of 3

א ו ו

Exhibit D Jeansville Basin Sheet 3 of 3

| Total<br>Solids<br>(mg/l)               | (+ /9)          | I       | I          | 1      | 622     | 1      | 1      | I              | I              |
|-----------------------------------------|-----------------|---------|------------|--------|---------|--------|--------|----------------|----------------|
| Sulfates                                | (+ /8)          | I       | I          | I      | 356     | 300    | 312    | 420            | 410            |
| Manganese                               | (+ /9m)         | ı       | , <b>1</b> | ł      | 4.9     | I      | ١      | I              | ı              |
| Aluminum                                | (+ 3.11)        | ı       | ı          | I      | 11.8    | I      | ı      | ı              | ı              |
| Total Iron<br>mo/1) (lhs/dav)           | (Im loor)       | I       | I          | ı      | 619     | 401    | 284    | 476            | 438            |
| Tota.                                   | (+ /9)          | I       | I          | I      | 5.4     | 4.9    | 2.0    | 6.4            | 5.7            |
| Acidity<br>(as CaCO3)<br>2/1) (1hs/dav) | (in loot)       | - 1     | I          | ł      | 30,200  | 16,700 | 31,300 | 18,700         | 20,000         |
| Aci<br>(as<br>(mg/l)                    | (+ <u>19m</u> ) | ı       | I          | 1      | 264     | 204    | 220    | 252            | 260            |
| Alkalinity<br>(1) (1hs/dav)             | (Inn leas)      | I       | I          | I      | 0       | 0      | 0      | 0              | 0              |
| Alka<br>(mg/l)                          | (+ /9)          | I       | ı          | - I    | 0       | 0      | 0      | 0              | 0              |
| нч                                      |                 | I       | ī          | ī      | 3.3     | 3.4    | 3.4    | 3.3            | 3.3            |
| Volume                                  | (mgm)           | 14.7    | 16.1       | 15.1   | 13.7    | 9.8    | 17.0   | 8.9            | 9.2            |
| Date                                    | Date            | 5-21-70 | 5-27-70    | 6-4-70 | 6-11-70 | 7-9-70 | 8-5-70 | 9-11-70<br>(4) | 9-11-70<br>(5) |
| 10001                                   | POCALION        | Quakake | (Cont'd.)  |        |         |        |        |                |                |

(1) Analyzed for dissolved solids only.

(2) Sample collected at 7:00 A.M.

(3) Sample collected at 2:00 P.M.

(4) Sample collected at 8:00 A.M.

(5) Sample collected at 1:00 P.M.

### EXHIBIT E

٦

.

### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

### JEANSVILLE BASIN MINE DRAINAGE ABATEMENT STUDY

### MINE DRAINAGE VOLUMES, CONSTITUENTS, AND CHARACTERISTICS MEASURED AT AUDENRIED AND QUAKAKE TUNNELS DURING LOW, AVERAGE, AND HIGH GROUNDWATER CONDITIONS

| Groundwater Conditions       | Audenried Tunnel | Quakake Tunnel |
|------------------------------|------------------|----------------|
| Low                          |                  |                |
| Volume (mgd)                 | 9.1              | 8.5            |
| pH Range                     | 3.2-3.4          | 3.2-3.3        |
| Total Iron                   |                  |                |
| mg/l                         | 7.1              | 5.8            |
| tons/day                     | 0.27             | 0.21           |
| Acid (as CaCO <sub>3</sub> ) |                  |                |
| mg/l                         | 380.             | 284.           |
| tons/day                     | 14.4             | 10.1           |
|                              |                  |                |
| Average                      |                  |                |
| Volume (mgd)                 | 16.6             | 15.0           |
| pH Range                     | 3.2-3.5          | 3.2-3.6        |
| Total Iron                   |                  |                |
| mg/1                         | 4.6              | 3.6            |
| tons/day                     | 0.32             | 0.23           |
| Acid (as $CaCO_3$ )          |                  |                |
| mg/1                         | 345.             | 235.           |
| tons/day                     | 23.8             | 14.7           |
| High                         |                  |                |
| Volume (mgd)                 | 22.6             | 18.1           |
| pH Range                     | 3.2-3.5          | 3.4-3.6        |
| Total Iron                   | 5.2-5.5          | 5.4-5.0        |
| mg/1                         | 3.1              | 1.6            |
| tons/day                     | 0.29             | 0.12           |
| Acid (as CaCO <sub>3</sub> ) | 0.25             | 0.12           |
| mg/1                         | 329.             | 208.           |
| tons/day                     | 31.              | 15.7           |
| ,                            |                  |                |

Sheet 1 of 4

### EXHIBIT F

### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

### JEANSVILLE BASIN MINE DRAINAGE ABATEMENT STUDY

### ASSUMPTIONS AND CALCULATIONS USED TO ESTABLISH DESIGN MINE DRAINAGE VOLUMES AT AUDENRIED AND QUAKAKE TUNNELS

### Design Average Mine Drainage Volume

| Estimated total average precipitation<br>in the Basin (1)                                                                      | 49.51        | inches  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------|---------|
| Estimated total precipitation in the Basin<br>from October 1969 through September 1970 (2)                                     | 44.32        | inches  |
| Precipitation deficiency                                                                                                       | 10.6         | percent |
| Average mine drainage volume based on gaging,<br>sampling, and analytical program from November<br>1969 through September 1970 |              |         |
| Audenried Tunnel                                                                                                               | 16.6         | mgd     |
| Quakake Tunnel                                                                                                                 | 15.0         | mgd     |
| Design average mine drainage volume<br>Audenried Tunnel<br>Quakake Tunnel                                                      | 18.4<br>16.6 | -       |
| Design Wet-Weather Mine Drainage Volume                                                                                        |              |         |
| Estimated total average precipitation from<br>December through April over period of record (1)                                 | 18.33        | inches  |
| Estimated total average precipitation from<br>December 1969 through April 1970 (2)                                             | 16.79        | inches  |
| Precipitation deficiency                                                                                                       | 8.4          | percent |

Exhibit F Jeansville Basin Sheet 2 of 4

Average mine drainage volume based on gaging, sampling, and analytical program from December 1969 through April 1970 Audenried Tunnel 22.6 mgd Quakake Tunnel 18.1 mgd Design wet-weather mine drainage volume Audenried Tunnel 24.5 mgd Quakake Tunnel 19.6 mgd Design Maximum Mine Drainage Volume Estimated total 24-hour accumulation of rainfall that will occur no more frequently than once every 10 years 4.59 inches Estimated acreage contributing ground and surface water to Basin mine drainage discharges Audenried Tunnel 4,856 acres Quakake Tunnel 4,582 acres Estimated acreage contributing only groundwater to Basin mine drainage discharges Audenried Tunnel 788 acres Quakake Tunnel Fifty percent of the total rainfall on the Basin assumed lost to the atmosphere by evaporation and transpiration Estimated runoff coefficient for areas contributing only groundwater to Basin mine drainage discharges 0.35

Exhibit F Jeansville Basin Sheet 3 of 4

Mine drainage volume based on acreage contributing surface water and groundwater

Audenried Tunnel Total available rainfall

 $\frac{4.59 \text{ in.}}{\text{day}} \ge \frac{1 \text{ ft.}}{12 \text{ in.}} \ge 4,856 \text{ acres } \ge 43,560 \frac{\text{sq.ft.}}{\text{acre}} \ge 7.48 \frac{\text{gal.}}{\text{cu.ft.}} = 605 \text{ mgd}$ Evaporation - transpiration losses  $\frac{50}{100} \ge 605 \text{ mgd} = 303 \text{ mgd}$ Mine drainage volume from acreage contributing surface water and groundwater = 302 \text{ mgd}  $\frac{\text{Quakake Tunnel}}{\text{Total available rainfall}} = 7.48 \frac{\text{gal.}}{\text{acre}} = 7.48 \frac{\text{gal.}}{\text{cu.ft.}} = 571 \text{ mgd}$ Evaporation - transpiration losses

 $\frac{50}{100} \times x^{571} \text{ mgd}$  286 mgd

Mine drainage volume from acreage contributing surface water and groundwater 285 mgd

Exhibit F Jeansville Basin Sheet 4 of 4

49.1 mgd

Mine drainage volume based on acreage contributing groundwater only

Audenried Tunnel Total available rainfall

 $\frac{4.59 \text{ in.}}{\text{day}} \times \frac{1 \text{ ft.}}{12 \text{ in.}} \times \frac{788 \text{ acres } x \text{ 43,560}}{\text{acre}} \frac{\text{sq.ft.}}{\text{acre}} \times \frac{7.48 \text{ gal.}}{\text{cu.ft.}} 98.2 \text{ mgd}$ 

Losses Evaporation - transpiration

 $\frac{50}{100}$  x 98.2 mgd

Surface water runoff to streams

 $\frac{0.35}{\text{ ay}} \times \frac{4.59 \text{ in.}}{\text{day}} \times \frac{1 \text{ day}}{24 \text{ hr.}} \times \frac{788 \text{ acres } \times 0.646 \text{ mgd}}{\text{cfs}} \qquad 34.1 \text{ mgd}$ 

Mine drainage volume from acreage<br/>contributing groundwater only15.0 mgd

- Total design maximum mine drainage volume317 mgdAudenried Tunnel317 mgdQuakake Tunnel285 mgd
- Based on 37 years of data from U. S. Weather Bureau Station at Tamaqua 4 North Dam.
- (2) Based on precipitation recorded at U. S. Weather Bureau Station at Tamaqua 4 North Dam.

### EXHIBIT G

### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

### JEANSVILLE BASIN MINE DRAINAGE ABATEMENT STUDY

### RECOMMENDED CORE DRILLING PROGRAM OVER AUDENRIED TUNNEL

| Station<br>Location (1) | Surface<br>Elevation | Tunnel<br>Elevation | Depth Of Hole (2) |
|-------------------------|----------------------|---------------------|-------------------|
| 5,300 Feet              | +1,860               | +1,200              | 760 Feet          |
| 7,300 Feet              | +1,860               | +1,200              | 760 Feet          |
| 9,300 Feet              | +1,830               | +1,200              | 730 Feet          |

- (1) Based on inside distances from the mouth of Audenried Tunnel.
- (2) Holes to be drilled to a depth of 100 feet below tunnel elevation.

EXHIBIT H

## COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

# JEANSVILLE BASIN MINE DRAINAGE ABATEMENT STUDY

# PERTINENT DESIGN AND COST DATA FOR RECOMMENDED ALTERNATIVE ABATEMENT PLANS

| 10 Years<br>Per Ton                    | Of Acid<br>Removed<br>(3)                                 | \$5.90                                                                                                                                                                                                                                                          | \$0.59                                                                                                                                                                                                                                                                         |                                                         |
|----------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Cost For 300 Years<br>Per Ton          | Tota1                                                     | \$1,972,000                                                                                                                                                                                                                                                     | \$2,403,000                                                                                                                                                                                                                                                                    |                                                         |
| s<br>Per Ton                           | Of Acid<br>Removed<br>(3)                                 | \$4.50                                                                                                                                                                                                                                                          | \$0.09                                                                                                                                                                                                                                                                         |                                                         |
| Next 270 Years                         | Operation<br>And<br>Maintenance                           | \$2,600                                                                                                                                                                                                                                                         | \$1,200                                                                                                                                                                                                                                                                        |                                                         |
| ual Cost                               | Fixed (2)                                                 | \$2,400                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                              |                                                         |
| Average Annual Cost<br>ears<br>Per Ton | Of Acid<br>Removed<br>(3)                                 | \$18.30                                                                                                                                                                                                                                                         | \$ 5.13                                                                                                                                                                                                                                                                        |                                                         |
| Avera<br>First Thirty Years<br>Pe      | Operation<br>And<br>Maintenance                           | \$2,600                                                                                                                                                                                                                                                         | \$1,200                                                                                                                                                                                                                                                                        |                                                         |
| Fir                                    | Fixed (2)                                                 | \$17,800                                                                                                                                                                                                                                                        | \$68,100                                                                                                                                                                                                                                                                       |                                                         |
|                                        | Project<br>Cost                                           | \$244,600                                                                                                                                                                                                                                                       | \$937,000<br>(5)                                                                                                                                                                                                                                                               |                                                         |
| ne                                     | tion<br>Acid<br>(tons/day)                                | 3.05                                                                                                                                                                                                                                                            | 37.00                                                                                                                                                                                                                                                                          | measures.                                               |
| Estimated Mine                         | Drainage ReductionVolumeIronAcid(mgd)(tons/day)(tons/day) | 0.04                                                                                                                                                                                                                                                            | +0.10 (4)                                                                                                                                                                                                                                                                      | preventive r                                            |
|                                        | Dı<br>Volume<br>(mgd)                                     | 2.09                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                           | ations of                                               |
|                                        | Preventive Measures (1)                                   | Abatement Plan I<br>Construct 7,200 feet<br>of lined channel and<br>4,200 feet of unlined<br>channel, construct 14<br>transition structures<br>to accommodate point<br>sources of water, and<br>excavate and backfill<br>surface areas to prop-<br>er gradient. | Abatement Plan III<br>Clear debris for a max-<br>imum of 8,000 linear<br>feet within Audenried<br>Tunnel; construct im-<br>permeable reinforced<br>concrete seals with<br>acid-resistant liners<br>and emergency relief<br>valves in both<br>Audenried and Quakake<br>Tunnels. | (1) See Plate III for locations of preventive measures. |

Based on 30-year amortization at 6 percent. Calculations based on design average conditions. Reflects 16.6 percent increase in iron loading. Does not include cost of core drilling program.

26430