APPENDIX I – WATER SAMPLING DATA – STRIP MINES

STONY CREEK WATERSHED (SL-179)
WATER SAMPLING DATA
STRIP MINE AVERAGES

	ity	۲. کا	187.78	35.4	* * Y O	529.54	.74	. 1	•	9	•	9		5.74													r		
	Alkalinity	1111	9	5.0	7.5	331.75	12.71	i		3.00	•	•	17.71	11.00	ι 0 0	pdd wdd	. 1	ı	ı	J	ı	I	ı	ı	ı		ı	ı	
															7 0 1	ppm	LN	LN	IN	LN	ΙN	LN.	IN	IN	LN	IN	IN	IN	
	Acidity ppd	۲ ۲	ı	ı	i	1	1	ı	ı	ı	i	ı	ł	ı															
ר ני	Hot Aci		NT	LN	LN	TN	TN	LN	$_{ m LN}$	NT	NT	LN	IN	LN	1	pdd	α α	3.7	79	1.8	12.15	2.0	40.86	2.9	8.3	53	2.1	111.20	
A V LINAGEL			~~	14		•			_						Sulf	odd wdd	17	107	101	225	209	230	09	290	\vdash	117	\sim	184	
ייייייי אי	Acidity	1 1	4.	4.04	4.5	ن	.73	69.56	5.	•	7.03	7	2.8	1.23															
77.77			.25	О,	2		00		Φ.	7	00			0.0	Iron	pdd	• 54	•03	1.09	•	1.40	1.83	•61	2,44	• 3	5.48	φ	3.94	
1	Cold ppm	4	9	N		m	12.	99		74.	13.	17.	30.	9	Total	mdd	.13	•10	•23	• 46	2.03	3.30	• 63	3,93	9•	4.14	φ	.10	
	Hd		9•9	•			0.9	3.3	•	4.0	0.9	4.7	5.4	6.4	Ĕ	d					33	(-,		()	(,)	7		9	
	GPD					938,880	8,640		i	247,680			292,320	36,000	ous Iron	pdd	.54	• 03	•	1.02	• 23	•62	• 22	•84	1.00	9	9	66.	
	GPM		443	 :	195	Ω	9	106	9	1/2	100	103	203	25	Ferrous	шdd	• 13	•10	15	.38	3.41	.87	•	1.17	2.96	~ ·	0	1.40	
	Sta. No.		S1L13A	\sim	\sim	S1L13	S1L22	S3L3A	SSLSB	S 3L 3	S3L13A	3L.L	3L.L	S3L26			SILI3A	SILI3B	S1L13C	STTT3	S1L22	S3L3A	$\frac{3L}{2}$	3	S3L13A	31.1	3L.1	S3L26	

NT = Not Taken

Alkalinity ppm ppd	7 1.59 7 1.59 7 1.04 6 2.65		pdd			I
Alka ppm	11.5		Hardnes ppm pp		T T T T T T T T T T T T T T T T T T T	LN
Acidity ppd	111111		pdd	73.27 21.85 238.49 111.06 25.59 307.83	18.08 2,881.89 708.95 4.93 345.21 3.959.06	17.5
ty Hot ppd ppm	2.18 NT 1.59 NT 19.79 NT 7.61 NT 2.54 NT 20.18 NT 53.89 NT	3.75 319.25 319.25 117.58 874.90	Sulfate ppm	193 181 295 289 307 399 1,664	5,900 5,900 3,460 3,460 1,024	36
Cold Acidity ppm pp	6.00° 7.29° 24.00 19.86 37.29 21.86	60.0 40.0 80.0 80.0 60.4 36.0 76.4	l Iron ppd	3 1.30 6 14.36 4 14.36 7 1.78 9 2.37 3 22.34	2.15 9.61 2.26 0.07 1.32	60•
D Hd	0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0	242824 8 24 24 8 34 55 11 25 8	Tota. ppm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.72 23.00 11.90 3.26 13.72 56.60	• 22
JPD		39,	s Iron ppd	.41 6.45 6.45 1.45 10.05	0.07 4.35 1.54 .05 .82 6.83	• 02
GPM G	39 119 74 42 89 89	9 72110	Ferrou ppm	1.26 .39 7.79 2.07 25.80 1.19	2.18 7.08 8.04 2.24 9.26	.13 Taken
Sta. No.	\$4L3A \$4L3B \$4L3C \$4L3D \$4L3E \$4L3E \$4L3E	S4L11A S4L11B S4L11C S4L11D S4L11 S4L11		S4L3A S4L3B S4L3C S4L3D S4L3E S4L3E S4L3E	S4L11A S4L11B S4L11C S4L11D S4L11E S4L11E	S4L19 NT Not T

-394-

STONY CREEK WATERSHED (SL-179)
WATER SAMPLING DATA
STRIP MINE AVERAGES

Alkalinity ppm ppd	1	, f	!	ı	i	ı	• 03	1	ł	i	ı	ı		٠													
Alkal ppm	f	1		ı	ı	i	.57	i	ı	ı	i	ı	ness	pdd	ı	ı	ı	ļ	I	ı	1	1	1	ļ	1	1	i
Acidity ppd	ı	1 1	· 1	ı	1	i		i	ı	1	i	į	Hardness	mdd	LN	LN	LN	LN	LN	LN	LN	ĽN	NT	LN	LN	L	L
Hot Ac	LN	T N	T LN	LN	$_{ m LN}$	LN	NT	LN	LN	LIN	LN	NT	o)	pdd	51.45	3.0	226.98	⊢	2	1.9	2	615.91	460.21	χ, α	0.1	15.7	ა ა
ity ppd	8.72	8.51	· (1)	.45		• 4	1.54	7.9	56.02	2.7	0.3	7.1	Sulfate	шďď	277	0	.19 <u>8</u>	57	63	∞	508	41	611	\sim	N C		٧.
Cold Acidity ppm pp	68.17	39.50		•	3	o.	14.14	68.	592.86	70.	86.	•	Iron	pđd	1.70	4.9	5.61	4		•14		• 02	58.10	`•	$\stackrel{\bullet}{\circ}$	1.0	٠ ر
) Hd	3.2	3.5	•	•	•	•	4.1	•	2.6	٠	. 7	•	a.l	mdd	12.13		3.32		ന് •	0		.17	89.59	ى د ى د	י הי	4.7.4	o 4
GPD	21,600					250,560	11,520					138,240	s Iron	pdd	.77	.13		1		.09		• 02	7.90			• •	
GPM	15	20		H	7	174	∞	92	ω	10		96	Ferrous	mdd	4.12	.58	1.78	en (•		• 4	117	11.81	• 4, 0	• <	• -	T • T
Sta. No.	S4L21	S4L27A S4L27B	S4L27C	4L2	4L2	S4L27	S4L34	S4L100A	S4L100B	S4L100C	S4L100D	S4L100			S4L21	S4L27A	S4L27B	S4L27C	S4L2 /D	54L2 / E	24L2/	S4L34.	S4L100A	777777VVD	041100C	241100D 841100	244100

STONY CREEK WATERSHED (SL-179)
WATER SAMPLING DATA
STRIP MINE AVERAGES

ity ppd		
Alkalinity ppm ppd		Hardness ppm ppd NT
Hot Acidity ppm ppd		ate ppd 21.44 4.78 2.74 41.77 6.03 24.28 12.50 18.17 9.35 10.86 10.86 17.60 2.81 10.62 2.81
Ноt ррт		Sulfate ppm ppc 475 21 244 4 189 2 617 41 343 6 421 24 417 12 565 18 665 9 422 10 448 10 192 2 179 10
	O M 4 8 8 9 M 4 9 15 19 19 19 19 19 19 19 19 19 19 19 19 19	
idity ppd	0	on ppd 11.053 3.65 3.65 1.44 1.24 1.24 1.24 1.26 1.26 1.26 1.26 1.26 1.26
Cold Acidity ppm ppd	219.00 110.60 42.17 306.67 237.50 258.33 255.00 241.67 186.67 186.67 144.00 73.20 87.00	Total Iron ppm ppc 4 17 35 04 54 63 4 62 62 67 85 00 827 17 1 6 125 67 3 6 30 00 82 83 68 50 1 4 11 50
Hd	w	Iron pd 05 05 17 46 01 39 22 38 .19 .19 .19 .18
GPD		S C C
GPM	00000000000000000000000000000000000000	Ferrou ppm 1.13 10.42 33.62 1.95 1.95 6.73 40.33 40.33 17.28 17.28 15.92 6.22 8.70 1.10 5.32 2.62
Sta. No.	S4L101A S4L101B S4L101C S4L101D S4L101F S4L101H S4L101H S4L101L S4L101N S4L101N S4L101N S4L101N S4L101N	S4L101A S4L101B S4L101C S4L101D S4L101F S4L101H S4L101H S4L101L S4L101N S4L101N S4L101N S4L101D S4L101D

nity ppd	nd ne 111111111111111111111111111111111111	
Alkalinity ppm ppd	Hardne Dom Da	TUN
Acidity ppd		29.57 61.30 179.58 92.555 112.27 48.56 19.23 35.46 63.41 72.12 58.30 34.44 21.06 16.23 1.159.30
Hot Aci ppm	NT N	2,460 2,960 2,960 2,980 1,300 1,300 2,150 5,275 4,275 4,025 4,025 4,73 4,73 600
lity ppd	13.08 31.54 82.14 26.47 24.15 8.39 4.27 29.15 21.94 24.64 24.64 15.93 10.22 10.22 435.18	2. 4 4 79 79 79 79 79 79 79 79 79 79 79 79 79
Cold Acidity ppm pp	1,088.00 1,048.00 1,186.00 834.00 934.00 606.00 292.50 530.00 1,700.00 1,450.00 1,450.00 238.00 257.50 15,839.91 Total Iron	3.00 3.00
Hd	2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	1 0 m H HH4 01m
GPM GPD	1 3 2 1 2 2 1 2 5 5 94 135,3 Ferrous Ir	168.40 4.78 6.52 136.70 53.08 6.30 20.80 24.70 30.50 80.00 81.50 161.00 161.00 122.25 1,079.62
Sta. No.	S4L101R S4L101S S4L101U S4L101V S4L101X S4L101X S4L101X S4L101Z S4L101AA S4L101BB S4L101BB S4L101BB S4L101BB S4L101BB	S4L101R S4L101S S4L101T S4L101U S4L101W S4L101X S4L101X S4L101Z S4L101B S4L101B S4L101CC S4L101DD S4L101DD S4L101DD S4L101DD S4L101DD S4L101DD S4L101DD S4L101DD

STONY CREEK WATERSHED (SL

	inity		1 (9		.22		1.25	1.17	ı	ı	ľ	ı	1	ness		ı	1	i	ı	ı	i	i	i	1	·I	1	i	1 1
	Alkalin ppm		ω	φ	4.	Š	\vdash	 	2.57	3.2	i	1	1	ı	1	, Hardnes	wdd	LN	LN	LU	LN	LU	HZ.	LN	LN	IN	LN	IN	TN	NT NT
(6/	lity ppd	•	ı	ı	. 1	į	i	ı	ı	1	1	ı	1	1	1	ď	pdd	13,38		15.8	185,30	24.3	20.1	9•0	176.00	18.59	16.8	3,3	15.7	40.68 896.61
CREEK WATERSHED (SL-179 WATER SAMPLING DATA STRIP MINE AVERAGES	Hot Acidity ppm ppd	LN	LN	TN	LN	NT	LN	LN	TN	LN	TN	LN	LN	LN	E L	a T		5	523	\circ	4	9	22	0	317	46		3,340	_ ~	824 5,540
MATERSHED (S. SAMPLING DATA MINE AVERAGES	cidity	• 44	ص	٠ ج	φ	٦.	 (ς.	9.01	1.20	6.7	2.7	62.62	10.0	2,1	•							•				**			
STONY CREEK WATER SP STRIP MI	Cold Aci ppm	. 4	6.7	4.4	7.2	4.7	13		14.57	3.20	37.	92.	326.00	200.	55.	otal Ir	pdd md	. 99	5.96 .92	0.50 .6	6.74 4.4	3.5	TT.	9.6 17.	2.87 1.53	.47 .23	.52 16.7	.90 1.7	.86	1.12 .06 3.40 19.09
STC	Hd	•	•	•	•	•	4, r & 0	•	4.9	5.5	•	•	4.0	ന് (9	T	ď			2 .	<u> </u>	⊣		ñ	,			4	•	53
	GPD							125,280	70,560	40,320					130,400		pdd	• 14	w r	٠ د	70.7	4 (> <	4,	5.96	•10	8.87	co r	• 	.05 9.41
	GPM	∞	20	ന	31	20	2 2	α/	49	28	760		1.7	4. 7	/85 T	Ferrous	mdd	.51	Ω t	→ (• ~ ~	- •	0T • CK	T • 7	1.34	• 24	0	09 • /.	9T•T	12.72
	Sta. No.	S5L2A	S5L2B	S5L2C	S5L2D	SSLZE	S5L2F	7770	S5L4	S5L10	S6L15A	S6L15B	S6L15C	SOLISU	CTTOC			S5L2A	SSLZB	ひしてんし	27T/7D	コン	S.51.2	ן ר ר ר		S5L10	S6L15A	SOLISB	70TT07	SGL

STONY CREEK WATERSHED (SL-179) WATER SAMPLING DATA STRIP MINE AVERAGES

bpd ppd	199.24 .06 .09 41.54 240.96 34.84 63.47 98.31	
Alkalinity ppm p	7,784.0 .8 .8 .166.2 40.4 42.0 82.4	
ty pd.	7, 7, 8,	E THEFT HEE HEEL .
Hot Acidity ppm ppd.	TN TN TN TN TN TN TN TN TN TN	95.39 78.80 29.33 6.90 189.19 404.61 342.52 909.15 1,251.67 125.54 22.74 661.31
Acidity ppd	16.46 10.12 94 .33 27.85 7.10 6.58 13.68 8.47 5.04 274.25 287.76 Sulfate	
Cold Ac ppm	150.0 249.8 61.2 23.4 484.4 6.4 6.4 10.0 10.0 157.2 374.0 575.0	33 - 002 - 013 - 003 - 0
Hd	10.1 3.8 3.4 5.4 5.8 7.0 6.6 6.8 3.7 Total	1.18 1.42 1.42 1.15.34 2.00 20.49 11.66 17.04 4.12 1.72 1.08
GPD	40,320 351,360 93.600 ppd	3 40 002 003 3 40 5 40 5 42 5 42 1 5 7
GPM	4 9 2 1 13 131 244 3 25 3 37 65 Ferrous	
Sta. No.	S7L2B S7L2C S7L2C S7L2F S7L2F S7L2 S7L2 S7L7A S7L7A S7L7A S7L7A S7L7 S7L7B S7L7 S7L7B S7L7C	S7L2B S7L2C S7L2D S7L2E S7L2F S7L2G S7L2 S7L7A S7L7A S7L7A S7L7A S7L7A S7L7A S7L7A S7L7A S7L7A S7L7A S7L7A S7L7A S7L7A

ty ppd	1.94	1	.0	2.35		•	1.4	7.1	44.19											•					
Alkalinity ppm	3 • 4	i	• • 1	5 • 4	ი 4 0 ი ა ა	0.0	, 7 60 60	•	21															~	
				-			₹.			Hardness	pdd	1	ı	1	1	i	ı	1	1	i	ı	ı	ı	I !	,
Acidity ppd	1	ı	1 1 1	i	111	ı	l I	I	f,	Hard	mdd	LN	IN	LN	IN	LN	E Z	TN	EZ Z	LN	IN	IN	E E	T N	
Hot Ac:	LN	TN	TN NT NT	LN	TN TN TN	TN	T LN	LN	IN	ate	pdď	13.20	6.32	7.63	•	8.2	-	0.3	11.19	1.5	52.4	408.0	2.7	315,98	
Acidity ppd	6.92	4.33	1.94 .76 15.68	დ ფ	5.81 3.35 9.16		• 9		5	Sulfate	mdd	15	140	14		133	120	29	22	28	880	588	748) (A)	
Cold Acpm	5.8	100.0	2 2 2 2 2 4 9 4 9 4 9 4 9 4 9 9 9 9 9 9		7.4 9.4 16.8	•	9	•	9.5		pdd	• 08	.17	.21	•01	• <u>16</u>	• 38	.18		.47		•4	25.	61.	
Нď	•	2.9	04 K	•	5.50		• •	•	7.4	Total	mdd	• 08	3.48	.23	90.	00°T	1.29	1.24	.42	1.66	.82	(T) (1.00 9.30	, r	•
GPD	~	2,880		93,600	164,160						pdd	• 08	• 02		0.01			e c	• L3				• 0.1 0.4		
GPM	70	2	2 8 6 8 6 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8		77 37 114	37)		38	Ferrous	mdd	• 08	.36	.15	90•	44.2 2.3	0	• 62	* 7.4 7.0	98•	• 36	.24	1. 2.6).(1)	Taken
Sta. No.	10L1	S10L13	S10L15D S10L15E S10L15G	STOLES	S10L16A S10L16B S10L16	S10L17A	10L1	10L1	10L1			S10L12	S10L13	S10L15D	S10L15E	510L15G	CTTOTE	S10L16A	STOLLOB	ST0L16	10L1	S10L17B	8101170	SIOLITE	NT Not

Alkalinity ppm ppd	108.8 19.70 112.4 5.99 120.0 5.31 186.0 45.68 228.0 24.18 84.0 27.64 82.0 54.84 82.0 63.17 32.2 7.70 28.2 61 138.0 8.42 98.8 17.33 114.0 6.42	Hardness ppm ppd NT
Acidity ppd		ppd 145.80 40.05 29.74 196.45 108.42 196.41 419.02 446.77 54.35 4.64 52.19 166.79 55.10 2,623.04 308.43 24.76
Hot Ac	TN THN THN THN THN THN THN THN THN THN T	Sulfate Ppm 826 786 626 796 1,038 626 1,038 178 878 878 932 944 3,100 2,500 1,140
Acidity ppd	1.29 .43 .89 .884 1.884 4.71 6.76 .703 7.72 692.44 64.45	Iron ppd 05 04 03 77 15 23 05 83 10 113 4.65
Cold A	7.7.2 111.6 21.6 8.0 8.0 10.0 84.0 518.0 6.0	Total Irppm .22 .67 .14 .30 .30 .30 .30 .56.76 .26 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30
Hd	7.7.7.7.7.7.9.9.8.4.4.0.7.8.4.4.0.0.7.8.4.4.0.0.7.8.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
GPD		1s Iron ppd 04 01 03 02 09 13 20 03 22 28 264 264
GPM	18 16 30 37 10 16 18 12 12	Ferrous • 20 • 25 • 12 • 12 • 20 • 20 • 18 • 24 • 17 • 17 • 17 • 18 • 18 • 18 • 12 • 17 • 18 • 18 • 24 • 17 • 18 • 1
Sta. No.	S10L17F S10L17G S10L17H S10L17K S10L17K S10L17K S10L17M S10L170 S10L17Q S10L17Q S10L17R S10L17R S10L17R S10L17R	S10L17F S10L17G S10L17H S10L17H S10L17K S10L17K S10L17N S10L17N S10L17N S10L17R S10L17R S10L17R S10L17R S10L17R

STONY CREEK WATERSHED (SL-179)
WATER SAMPLING DATA
STRIP MINE AVERAGES

tγ ppd	553.38	. 1 1 1 1	5.53	ess ppd	1 1 1	1 1	111	1111
Alkalinity ppm pp	1 1 •	• 1111	33.8	Hardnes ppm pp	TN TN TN	TN TN	TN TN TN	NT NT NT NT
Acidity ppd		F 1.1 1 1	1 1 1 1	pdd	330.79 1,868.03 8,976.89	36.0	57.67 83.97 177.70	50.5 26.3 55.0 31.9
Hot	TN S		TN TN TN TN	Sulfate ppm	2,000 4,340 6,180	വ ഗ	174, 224 550	180 1,046 1,016 2,242
ty ppd	66.2 685.3 ,570.9	7.53 6.83 50.41 64.77	1.97 8.19 4.25 14.41	S Q	~ ~			HIW
Cold Acidity ppm pp	58.40 1	4 4 6 6 7	6.00 7.00 3.60 6.60	Iron	.13 14.14 26.88	.03	.12 .37	. 111 . 339.
Cold ppm	37 1,66 3,65	3. 2. 8. 14.	65.3	Total-L) ppm	1.46 35.90 60.10	φ 4	1.11 1.44 3.00	5.98 2.98 9.53
Нď	4.8.9.2		6.6 4.1 4.3 5.0	Ξ Q,	7			
GPD	704,160	142,560	74,880	ous Iron ppd	.10 2.31 7.40	.02	.16	. 32 . 32 . 66 . 43
GPM	14 40 489 10	21 35 43	25 20 7 52	Ferrouppm	1.00 6.14 43.52	.22.	40 99	
Sta. No.	S10L17DD S10L17EE S10L17	\$10L28B \$10L28C \$10L28E \$10L28	\$10L36B \$10L36C \$10L36D \$10L36		\vdash	ENI ENIE	\$10L28C \$10L28E \$10L28	S10L36B S10L36C S10L36D S10L36

NT = Not Taken

STONY CREEK WATERSHED (SL-179) WATER SAMPLING DATA STRIP MINE AVERAGES

nity ppd	33 28 90 46 291 54 294 16		n p p p p p p p p p p p p p p p p p p p
Alkalinity ppm ppd	14.2 29.2 39.2 99.8	1.6 6.2 27.4 35.2	Hardne Ppm NT NT NT NT NT NT NT NT
Acidity ppd	1111111	1111	23.85 383.15 68.49 14.16 241.36 3,579.28 158.38 4,468.67 812.15 6.28 1.36
Hot Ac		TN TN TN TN	904 488 617 842 1,452 2,200 7,703 7,52 105 891
Acidity ppd	1.81 2.68 2.68 5.65 23.67 4.64	271.68 1.38 .56 273.62	754 £ 4 6 5 4 L 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Cold Acpm	37.6 13.6 20.2 7.6 34.6 10.0 64.6	242.0 8.2 39.2 289.4	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Нd	04404740 108000000	56.55 1.35.66	11 11 11 11 11 11 11 11 11 11 11 11 11
GPD	403,200	81,440	40
GPM	11 13 13 13 23 231 280 4	111 14 126 18	23 19 8 8 24 19 19 19 19 19 19 19 19 19 19 19 19 19
Sta. No.	\$10L39A \$10L39B \$10L39C \$10L39D \$10L39E \$10L39G \$10L39G	S10L47A S10L47D S10L47E S10L47	S10L39A S10L39B S10L39C S10L39E S10L39F S10L39G S10L39G S10L47A S10L47D S10L47E S10L47

NT = Not Taken

STONY CREEK WATERSHED (SL-179)
WATER SAMPLING DATA
STRIP MINE AVERAGES

Sta. No.	GPM	GPD	Hd	Cold ppm	Aci	dity ppd	Hot Ac	Acidity ppd	Alkalinity ppm pp	ity ppd
S11L1A S11L1B S11L1	40 34 74	106,560	7.0	30. 12. 4 2.	20 25 45	10.98 3.57 14.55	TN TN TN	1 1 1	185.20 187.00 372.20	65.35 44.48 109.83
SIIL6A SIIL6B SIIL6C SIIL6	24 35 38 97	139,680	4.88	407. 169. 12. 589.	14 43 28	101.06 67.55 5.11	610 400 1.010	395.90 240.40 636.30		28.0 7.7 35.8
	Ŋ	7,200	5.6		.50	. 32		ı	. 7	. 7
S12L1	15	21,600	7.1	4.	19	1.12	LN	í	47.00	7.36
S12L5A S12L5B	17		•	45		0 <	HN H	ı	1	i
S12L5C	, _T		• •	- 0	S)	3.4	T L N N	1 1	1 1	1 1
\$12L5D \$12L5	37	53,280	6. 6. 4. 6. 4.	222.	50	3	E Z	i 1	1 1	1 1
	Ferrous	H	Tot	Total I	Iron		Sulfate	ψ	Hardnes	0 0
	mdd	pdd	wdd		þdd	,	wdd	þďd	шďd	pdd
SIILIA SIILIB SIILI	2.05 .78 2.83	.62 .42 1.04	N H M	.38	.74 .44 1.18	م اثن الله	125 183 308	53.62 63.68 117.30	NT NT NT	1 1 1
S11L6A S11L6B	പ്പ	1.73	O 4	04	∞ $^{\circ}$		53 74	12.4	2,500	23
S11L6C S11L6	7		13	.69	4.10 30.29	,	(m 1/2)		, 4.0	, m c
S11L7	.10	•01	•	.01	0			7.0006	TN	• / ೧۲ • 1
S12L1	. 73	• 13	.	.83	3	-	1,569	. 4	LN	1
S12L5A S12L5B	- r	.57	9 6	∞ c				74.9	LN	1
S12L5C	φ	.05		വ	٠٠		⊃ Ò	7.9	TZ E	1 1
S12J.5D S12)	2.53 13.81	.04 1.42	5.49	68 49	0		3,365	4.	IN EN	1
NT = Not	Taken				,		′	•		

STONY CREEK WATERSHED (SL-179)
WATER SAMPLING DATA
STRIP MINE AVERAGES

nity ppd .	20 20	576.96
Alkalinity ppm ppd	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Hardnes ppm p NT NT 800 6 800 6 800 1,200 NT
Acidity ppd	3,925.00 3,925.00 625.00	5.53 19.14 1,281.59 1,306.26 711.16 157.76 125.40 32.30 49.76
Hot Aci	NT NT 500 500 1,300 NT NT NT NT NT NT	Sulfat ppm 365 483 829 1,676 1,564 1,564 703 4,108
Acidity ppd	4.06 354.28 359.20 408.41 87.17 9.18 4.38 7.64	on pd . 09 . 64 05.08 05.92 30.66 1.43 8.02 8.42
Cold Acid	54.00 107.50 295.71 457.21 882.86 323.25 91.00 113.50 104.75	Total Iron ppm ppd 6.22 38.50 121.50 205 166.22 205 166.22 205 118.00 30 17.72 1 207.50 8 112.00 8
Hď	u a a a a a a a a a a a a a a a a a	00 01 01 02 02 02 02 02
Ω	224,640	115. 115. 115. 16. 9.
3PM GP	2 2 3 3 8 8 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	Ferrous ppm 1.38 17.08 71.50 89.96 59.04 37.00 4.48 76.25 80.00
Sta. No. GPM GPD	S13L10A S13L10B S13L10C S13L10 S13L14A S13L14B S13L14C S13L14C S13L14C S13L14E	\$131.10A \$131.10B \$131.10C \$131.10 \$131.14A \$131.14B \$131.14C \$131.14C \$131.14C \$131.14E

																					·		
nity ppd	1.92	6				• 1 W	1.77	3.15	C	• ·	7 4 4 0 7 7 0 0)) (48.71							Dα	12	00	.07
Alkalinity ppm ppd	5.40	12.86	1.50	7	29.86	3.5	1.00	37.00		•	10.00	1.0	7	7 0 0	pdd		•			200	673	4,604.	42.
							•							Hardnes	mdd	, Fix	T. I.	TN EN		400	440	160	500
Acidity ppd	1	i	1	24.00		24.00	546.75	I	00 00	• 1	138.71	25.9	185.66	е Ф.Т.	pdd	10.01	φ		יני	50	57.07	510.35	36.12
Hot ppm	LN	LN	IN	2	1	2	19		~	I E	. 4	12	18	Sulf	mdd			94	126	86	212	150	398
Acidity ppd	2.95	1.47	6.02		. 73	4.41	17.95	09•		6.9	15.90	•04	9	C	ט	60	60	.03	9	99•	9	63	46
AC	0	9	0		-		_	о	9		4	~		Iron	pdđ	·	•	•	2	H	4.	17.	-
Cold ppm	25.6	6.8	18.5	9	17.7		15.7	7.2	24.8	9.7		1.4	53.1	Tota1		•26	.83	.35	.5	37,14	7 • 7	1.07	14.60
Нď	5.0	5,3	4.2	5.5	•	5.0	4.3	6. 8	4.7		5.7	5.5	•										
GPD	33,120	18,720	36,000		(302,400	570,240	11,520					944,640	ous Iron	pdd	• 05	• 02	• 03	• 46	• 38	. 84	• 45	.13
GPM	23	13	25	202	r	210	396	ω	127	61	445	2	929	Ferr	mdd	.22	•13	• 20	.20		٠ ص	.27	1.17
Sta. No.	SIR15	S4R16	S4R57	S4R101A	S4RIOIB	S4RIOI	S4R119	S4R121	4R12	4R12	S4R122D	4R12	4R12			SIR15	S4R16	S4R57	S4R101A	SAKIOIB	S4KIOI	S4R119	S4R121

17,339.00 86.54

100 NT 500 40

> 26.76 601.20 46.11

35 35 39

8.13 .52 35.64 3.41

1.95

.42 .45 1.64

S4R122B S4R122B S4R122D S4R121

• 44 95

160.43

1,049.00

	ity ppd	89.22 15.39 104.61 9.43 19.72 13.07 1.06 1.06 1.06		00 00 30
*.	Alkalinity ppm pp	95.00 74.67 169.67 11.88 10.13 14.25 10.25 7.50 1.50 33.50 6.75	Hardness ppm ppd	140 1,099. 140 1,099. 200 271. 700 799. NT N
	Acidity ppd	4 188.37 4 188.37 2 2.72 0 1,142.00 T T T T T T T T T T	d pdd	148.58 3.48 152.06 12.25 1,027.56 79.54 86.12 62.90 93.06 284.54 606.16 6.22 66.74
	Hot , ppm	24 24 24 1,000 1,000 NT NT NT NT NT NT	Sulfate ppm p	48 13 61 1,216 1,216 1,296 1,296 1,73 116
	Acidity ppd	8.45 2.95 11.40 2.23 285.62 12.69 26.57 12.56 49.44 149.74	Iron ppd	28.52 1.76 30.28 .76 56.55 5.71 6.25 5.83 8.75 27.35
	Cold A	18.43 11.50 29.93 4.00 384.00 8.25 96.75 68.75 123.25 19.00 316.00 4.75	Total ppm	22.14 8.65 30.79 1.42 61.35 61.35 27.13 33.50 16.08 5.13 83.37 .98
	Hd Q	6.6 9,280 6.7 9,280 6.2 8,080 3.8 6.4 4.7 4.7 4.3 3.3 3.3 8,720 4.6 5.3	s Iron ppd	16.21 1.21 17.42 .13 12.82 .80 .85 4.18 .51 3.98 .0.32
	GPM GPD	168 19 187 26 62 8 82 11 26 17 17 24 184 263 377 55	Ferrous	13.01 6.20 19.21 .32 17.08 1.40 6.90 22.00 1.93 1.53 33.76 1
	Sta. No.	S4R126C S4R126C S4R126 S4R132 S7R11A S7R11B S7R11D S7R11D S7R11D S7R11D S7R11D		S4R126B S4R126C S4R126 S4R132 S7R9 S7R11A S7R11D S7R11D S7R11D S7R11D S7R11B

	Alkalini tv	þďď	5 .5		0 7	5	5 8.23	0	0	2	2	2	5 2.2	150.8	5 . 72 5 151.55															
	Alka	wdd	38.2	2.3	5	3.2	. 7	30.5	8.5	2	[\sim	• 5		e S.S	þdd	ı	1	i	1	ı	1			ı	1.7	i		ı
	Acidity	pdd	I	i	ı	1	ı	ı	i	i		ı	1	ı	1 1	Hardnes	mdd		ĻN	LN	EZ E	T I	T.N	T E Z	T T	IN	LN	NT	LN	LN
}	Hot Ac	wdd	TN	IN	LN.	LN	NT	LN	LN	LN	LN	LN	LN	EN	NA	ate	pdd	. 1.32	٠ و	5.2	28.49	າ ເ	α. 78	400	. 2	9	19.13	7.4	11.93	9,3
	dity.	pdd	.25		φ	3.07	φ	1.75	1.56	.85	.12	4.	4.69			Sulfate	mdd	78	0	5	273	٠ لا	185	5	23	2	528	91	106	· ,
	Cold Acidity	mdd	16.5	ກໍ່	9.50		0.2	49.00	•	7	0	(134.75	75	.25		þďď	42	C •	О _р г			1.03	•	-	• [7.7		•	71.1
	Hd		6.4	٠	. 5. . 5. . 6.	4. 0.	•	5 0,1	•	•	•	c	7.	0. 2. 3.	•	Total	wdd	31.05	1 (7 <	.74	0.6	36.00		4	1.13 0.00	0	. 23	0/•	٠ ٠
	GPD		84 560	0 0 1		נו	096,00.					047 70	1, 1 , 1, 0		76,800		pdd	.27) [/0•	.13	- 58		0.	• 14.0		•	10°T	# C • C	1
	GPM (1 20) i	5.L	n <	#	ന (71	` [-1 ≪	, r	-	459 11	9 0	Ferrous	III d	20.18	\sim	333	5	8.6	20.75	N C	12.08	43.82) ()	57°	. 73	•
	Sta. No.		S7R19F S7R19	71	S /R 20D	S7R20	1 : 17 C	S7R26A	S7R267	700	77.7 77.0	S7R26		S/R28A S7R28B	S7R28			S7R19F S7R19	S7R20D	S7R20F	S7R20	S7R26A	S/RZ6B	2/K26C 87526D	37R26E	S7R26	STR28A	57R28B	37R28	,e. s

ity ppd	1.27 1.27 1.38 1.88 17.86 17.86 15.68 15.68 15.68	
Alkalinity ppm pp	10.00 105.50 94.75 59.50 26.50 46.75 67.75 12.75 19.25 60.50 15.75	Hardness ppm ppd NT
7 11		Har ppp NT NT NT NT NT NT NT NT NT
Acidity ppd		bpd 1.40 2.16 2.71 5.89 3.25 115.94 6.23 80.49 80.49 1185.62 410.80
Hot A		Sulfate ppm 117 56 108 135 80 81 102 208 1,512 1,512
Cold Acidity ppm ppd	31 23 23 23 24 35 24 35 31 36 36 36 37 37 40 40 40 40 40 40 40 40 40 40 40 40 40	on Ppd 1.06 1.08 1.53 1.39 1.57 1.57 1.06 1.19
Cold A ppm	26.00 36.00 19.00 40.75 28.50 36.25 34.50 30.25 13.25 13.25 30.75 6.50 308.75	Total Iron PPM PP 42.43 88.25 89.70 80.50 138.53 57.75 12.38 112.38 1.50 62.25 1.50 63.72 28
Hď	00000000000000000000000000000000000000	HQ HQ
GPD	35,920	. 1 Fron . 19
GPM GI	11 12 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	Ferrous ppm 15.38 74.85 12.53 12.10 13.03 40.00 83.75 100.38 2.73 2.9 392.64 11.12
Sta. No.	S7R32A S7R32B S7R32C S7R32E S7R32F S7R32H S7R32H S7R32U S7R32U S7R32U S7R32C S7R32C S7R32C	S7R32A S7R32B S7R32B S7R32D S7R32E S7R32F S7R32H S7R32C S7R32C S7R32C S7R32C S7R32C S7R32C S7R32C S7R32C

STONY CREEK WATERSHED (SL-179)
WATER SAMPLING DATA
STRIP MINE AVERAGES

	ity ppd	1.69	1	, i	1	1	0.4	. eo.	60.	4	5	6.50		pdd	į	1	1.460	٠ ۱	1	1,460	1	ı	1	1	ī	ı
	Alkalinity ppm pp	5.25	i	ı	I	ı	.5	. 7	2	0	5	7.0	Hardness		ΕN	LN	1,500	ŅŢ	LN	1,500	LN	LN	LN	TN	LN	LN
	Acidity ppd		681.53	i		681.53	1	i	í	ı	1	ı	ø)	pdd	α	1,644.63	6.69	190.40	78.3	65.6	7.0	-	.2	3.10	7.5	0
	Hot Ac	TN LN	700	EN	T.Z.C	00/	LN	LN	LN	LN	LN	NT	Sulfate	wdd		3,433	~~	94	\sim	,57	178	0	46	62	9	452
	Acidity ppd	.57.22	3.8	31.54	45.4	α Ο		• 6		66.	0	4	ron	pdd	80	28.60	9•	7.63.	5	6. 8	.58	60 °	•01	90.	• 62	1.36
1	Cold Ac	2.50	88.0	158.00		0.00	16.75	.5	9.7	0	7.2	8.2	1 H	шdd	2	35.03	1.54	38.80	00•99	6.34	11.40	• 18	۲,	1.44	υ (• 4
	Н	6. 440 5.	3.3	വ ന ന ന	η	4400 3•	4.4	•	•	•	2	,920 5.2	Iron	pdd		1.33	•		m	4.	• 26	• 08	.01	• 05	• 13 10 10 10	9/•
	GPM GPD	21 126 181		T 7	ه د	· >	<u>م</u> ا	1.7	α,				errons	wdd	11		6.14	4,	09.	• 14	5.00	• 1 2		4.	T • 00	•
	Sta. No.	S7R40C S7R40	SBRIA	SBRIB	SORIC	TUDC	S9R7A	S9R7B	S9R7C	S9R7D	S9R7E	S9R7			S7R40C	S7R40	SBRIA	SARIB	SORIC	SBKI	S9R7A	S9R7B	S9R/C	29K/D 20075	4 0	-

NT = Not Taken

ity ppd	. 15	4.63 1.29 2.22		
Alk sîf nity ppm pp	1.50 21.50 1.00 24.00	50 50 75	ppd IIII	j 1 1 1
Alka ppm	2 C	49.5(77.5(73.28)	Hardnes ppm ppc NT I NT NT N	E LU LU LU LU LU LU LU LU LU LU LU LU LU L
Acidity ppd	† † † †	1 111	ate ppd 40.73 83.84 125.46	38.59 8.68 3.19 11.87
Hot A	TN TN TN	NT NT NT	Sulfate ppm pp 96 4 70 173 8 339 12	235 723 165 888
idity ppd	10.80 2.62 6.74 20.16	1.48 1.61 1.70 3.31	on ppd •42 1.47	.06 1.76 3.08 4.84
Cold Acidity ppm ppd	23.00 11.00 22.00 56.00	25.75 135.75 84.00 219.75	Total Iron ppm pp 3.65 122.58 156.38	.28 146.00 102.00 248.00
Hd	4 9 4 4 6 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.7 5.7 6.2 6.0		
	096,	,320	Iron ppd .20 1.00 1.26	. 42 . 55 . 55
GPD	120	20	Ferrous ppm 1.40 83.08 .15	25 50 35 85
GPM	36 2 46 84	14 12 3	Fer ppm 1 83	34 32 66
NO NO	7A 7B 7C	1 1 B B B B B B B B B B B B B B B B B B	7A 7B 7C	B A
Sta. No.	S9R17 S9R17 S9R17 S9R17	S9R31 S11R1 S11R1	S9R17 S9R17 S9R17 S9R17	S9R31 S11R1A S11R1B S11R1