I. North Branch Watershed

a. General

The North Branch of Two Lick Creek originates near Purchase Line and the stream flows in a southerly direction for about 6.2 miles where it joins the South Branch at Wandin Junction to form Two Lick Creek.

Total stream length including all tributaries is approximately 19.9 miles. The total area of the watershed is approximately 12 square miles.

b. Stream Condition

An analysis of mine drainage contamination within the watershed provides the following breakdown on stream condition.

Table <u>25</u>
Stream Condition

North Branch Watershed

Stream Classification	Stream Length Miles	Percent Total Stream Length
Non-Polluted	15.5	78
Severely Polluted	2.0	10
Moderately Polluted	2.4	12

Approximately 22 percent of the North Branch Watershed is seriously degraded by mine drainage pollution.

Plate <u>22</u> shows the location of sampling stations and the extent of mine drainage pollution within the watershed.

c. Sampling Station Data

Thirty-four (34) sampling stations were installed and monitored. The minimums, maximums, and yearly averages of water quality data obtained from these stations are listed on Page 90 , in Table 26.

Plate <u>23</u> graphically illustrates the monthly relationship between stream flow, pollution load, and weather elements within the watershed based on measurements taken at Sampling Station #313 located at the mouth of North Branch.

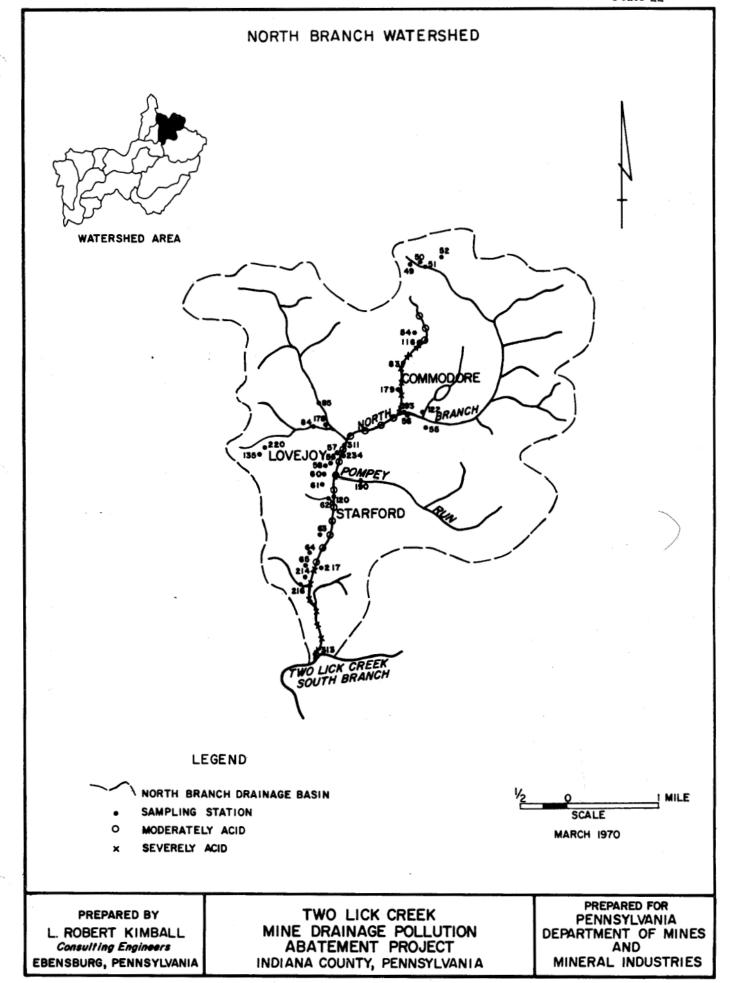


Table <u>26</u>

<u>Water Quality Data</u>

North Branch Watershed

Sampling Station		low GPM	pH <u>Range</u>	Acid Load Lbs./Day	Acid		Iro Mg.		Sulf Mg.	
313	Max. Min. Ave.	6,615 859 3,503	2.8 - 5.5	1,324	Max. Min. Ave.	250 12 31	Max. Min Ave.	10 1 3	Max. Min. Ave.	900 75 344
311	Max. Min. Ave.	7,425 272 2,798	4.5 - 6.0	365	Max. Min. Ave.	140 2 11	Max. Min. Ave.	2 0.05 1	Max. Min. Ave.	750 50 350
234	Max. Min. Ave.	0.4	3.6 - 4.5	0.4	Max. Min. Ave.	98 70 83	Max. Min. Ave.	3 1 2	Max. Min. Ave.	450 300 373
220	Max. Min. Ave.	6 0.4 2	3.1 - 4.5	3	Max. Min. Ave.	300 94 146	Max. Min. Ave.	14 1 5	Max. Min. Ave.	1,125 300 776
217	Max. Min. Ave.	188 44 110	3.7 - 5.0	602	Max. Min. Ave.	930 104 453	Max. Min. Ave.	1	Max. Min. Ave.	4,500 630 2,473
216	Max. Min. Ave.	122 1 42	3.7 - 4.7	32	Max. Min. Ave.	96 56 63	Max. Min. Ave.	6 1 1	Max. Min. Ave.	800 400 556
214	Max. Min. Ave.	52 1 9	3.6 - 4.1	12	Max. Min. Ave.	184 96 110	Max. Min. Ave.	9 2 3	Max. Min. Ave.	986 460 513
193	Max. Min. Ave.	3,748 612 2,300	4.8 - 5.7	361	Max. Min. Ave.	24 2 13	Max. Min. Ave.	2 1 1	Max. Min. Ave.	780 340 350

Table 26 Continued

Sampling Station		low PM	pH Range	Acid Load Lbs./Day	Acid Mg.	*	Iro Mg./		Sulf Mg.	
190	Max.	111	5.0 - 5.8	2	Max.	2 8	Max.	2	Max.	780
	Min.	1			Min.	2	Min.	1	Min.	15
	Ave.	39			Ave.	4	Ave.	1	Ave.	27
179	Max.	270	3.5 - 4.5	256	Max.	268	Max.	3	Max.	1,520
	Min.	36			Min.	156	Min.	1	Min.	650
	Ave.	112			Ave.	190	Ave.	2	Ave.	1,141
178	Max.	77	4.9 - 5.8	15	Max.	48	Max.	25	Max.	175
	Min.	10			Min.	22	Min.	1	Min.	55
	Ave.	37			Ave.	34	Ave.	6	Ave.	124
135	Max.	6	3.1 - 4.2	3	Max.	390	Max.	65	Max.	1,560
	Min.	1			Min.	126	Min.	7	Min.	365
	Ave.	1			Ave.	214	Ave.	34	Ave.	788
122	Max.	1,813	4.5 - 6.6	360	Max.	120	Max.	1	Max.	1,375
	Min.	77			Min.	2	Min.	0.05	Min.	300
	Ave.	300			Ave.	99	Ave.	1	Ave.	995
120	Max.	170	3.0 - 5.6	26	Max.	900	Max.	5 7	Max.	1,250
	Min.	1			Min.	4	Min.	1	Min.	200
	Ave.	12			Ave.	179	Ave.	13	Ave.	670
116	Max.	77	3.4 - 4.5	203	Max.	450	Max.	90	Max.	2,290
	Min.	21			Min.	160	Min.	3	Min.	8 2 5
	Ave.	46			Ave.	362	Ave.	58	Ave.	1,399
85	Max.	2,065	4.0 - 6.6	21	Max.	18	Max.	7	Max.	750
	Min.	1			Min.	2	Min.	0	Min.	40
	Ave.	265			Ave.	7	Ave.	1	Ave.	83

Table 26 Continued

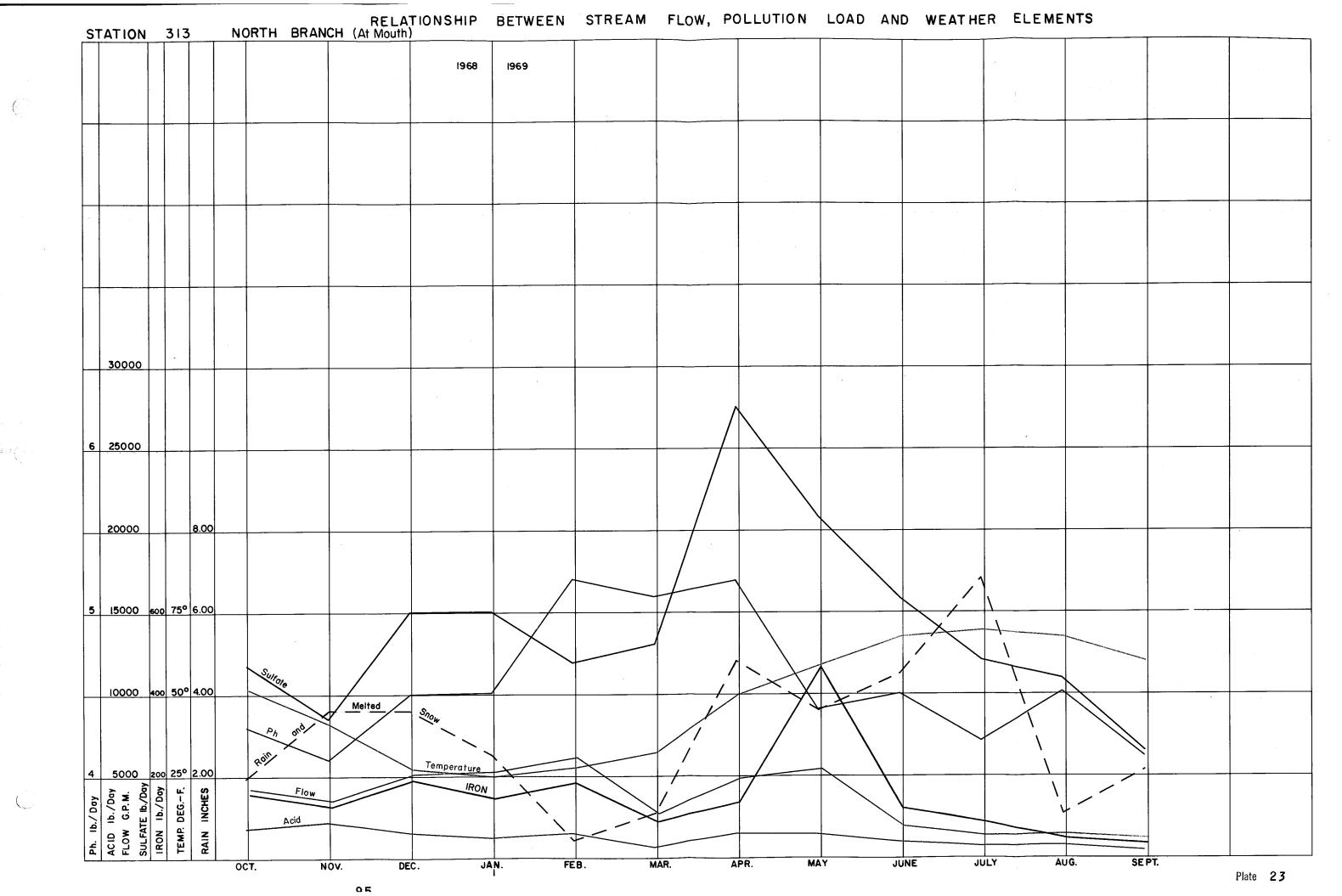

Sampling Station	Flo		pH Range	Acid Load Lbs./Day	Acid Mg.		Iro Mg./		Sulf Mg.	
84	Max. Min. Ave.	862 12 185	4.4 - 7.2	16	Max. Min. Ave.	40 2 7	Max. Min. Ave.	4 1 1	Max. Min. Ave.	305 75 154
83	Max. Min. Ave.	462 0.3 96	2.9 - 4.8	196	Max. Min. Ave.	380 14 170	Max. Min. Ave.	16 1 5	Max. Min. Ave.	1,880 150 879
65	Max. Min. Ave.	26 0.4 4	3.4 - 5.1	6	Max. Min. Ave.	830 86 139	Max. Min. Ave.	4 0.2 1	Max. Min. Ave.	850 100 457
64	Max. Min. Ave.	813 2 60	3.2 - 4.8	84	Max. Min. Ave.	440 50 116	Max. Min. Ave.	3 0.4 1	Max. Min. Ave.	800 150 596
63	Max. Min. Ave.	154 6 49	3.0 - 4.5	45	Max. Min. Ave.	650 50 76	Max Min Ave	7 1 2	Max. Min. Ave.	1,150 100 485
62	Max. Min. Ave.	130 1 17	3.2 - 5.4	17	Max. Min. Ave.	750 16 82	Max. Min. Ave.	2 0.2 1	Max. Min. Ave.	2,125 375 802
61	Max. Min. Ave.	93 1 11	3.1 - 4.7	12	Max. Min. Ave.	166 30 86	Max. Min. Ave.	15 1 4	Max. Min. Ave.	780 175 396
60	Max. Min. Ave.	171 2 29	3.0 - 4.4	37	Max. Min. Ave.	190 54 104	Max. Min. Ave.	6 1 3	Max. Min. Ave.	1,200 200 489

Table 26 Continued

Sampling Station	Flo GPI		pH <u>Range</u>	Acid Load Lbs./Day	Acid Mg./	*	Iro Mg./		Sulf Mg.	
59	Max. Min. Ave.	162 21 61	2.8 - 4.7	132	Max. Min. Ave.	380 118 181	Max. Min. Ave.	27 5 12	Max. Min. Ave.	1,500 300 916
58	Max. Min. Ave.	16 0.4 3	2.6 - 4.6	9	Max. Min. Ave.	464 32 287	Max. Min. Ave.	45 1 19	Max. Min. Ave.	1,600 125 759
57	Max. Min. Ave.	21 0.4 3	3.0 - 4.7	2	Max. Min. Ave.	230 20 54	Max. Min. Ave.	16 1 3	Max. Min. Ave.	700 4 280
56	Max. Min. Ave.	21 0.4 9	2.7 - 5.2	4	Max. Min. Ave.	500 12 34	Max. Min. Ave.	62 1 7	Max. Min. Ave.	1,100 40 356
55	Max. Min. A ve.	242 4 62	4.6 - 6.5	14	Max. Min. Ave.	50 3 19	Max. Min. Ave.	2 1 1	Max. Min. Ave.	450 125 304
54	Max. Min. Ave.	95 4 14	3.1 - 4.7	43	Max. Min. Ave.	998 28 250	Max. Min. Ave.	85 1 39	Max. Min. Ave.	2,125 200 1,121
52	Max. Min. Ave.	16 0.4 7	2.7 - 4.3	10	Max. Min. Ave.	278 64 118	Max. Min. Ave.	47 1 8	Max. Min. Ave.	1,350 75 394
51	Max. Min. Ave.	20 0.4 3	4.2 - 6.3	1	Max. Min. Ave.	70 10 35	Max. Min. Ave.	32 1 6	Max. Min. Ave.	900 50 412

Table 26 Continued

Sampling Station	Flow GPM		pH Range	Acid Load Lbs./Day	Acidity Mg./L.		Iron Mg./L.		Sulfate Mg./L.	
50	Max. Min. Ave.	26 0.4 15	3.2 - 4.5	4	Max. 280 Min. 15 Ave. 21	Max. Min. Ave.	12 1 1	Max. Min. Ave.	2,150 125 171	
49	Max. Min. Ave.	3 2 8 2 43	4.7 - 6.9	12	Max. 420 Min. 2 Ave. 23		1 0.01 0.4	Max. Min. Ave.	800 50 409	

Sulfate and iron vary correspondingly with flow, with peaks occurring during the spring months and lows during the fall. Low pH's occurred during periods of low flow with the lowest readings occurring in November in conjunction with the highest acid load. The acid load fluctuated very little over the year regardless of other influencing factors.

The North Branch contributed the following percentages of flow and pollution load to the total pollution loads measured at Sampling Station #416 at Clymer: Flow 21%; Acidity - 11%; Iron - 3%; and Sulfate - 20%.

North Branch discharged approximately <u>5,044,000</u> gallons of water per day into Two Lick Creek during the study period.

d. Coal Mining Activity

<u>General</u>

The area was extensively mined from the early 1900's to the 1950's. Map Sheets $\underline{1}$ and 3, Appendix A, shows the location and extent of both deep mining and strip mining.

Deep Mines

There are no deep mines presently in operation in the watershed. The last large scale mine, the Commodore complex, ceased operations in 1952. Most of the abandoned mines were worked during the 1920's. The majority were drift mines and six were slope mines.

Table <u>27</u> below lists the abandoned mines in the watershed. Also listed is the following information: Type of opening, total number of openings, seam mined, maximum head, whether or not the mine is draining water, and number of acres mined.

Table <u>27</u>
Abandoned Mines

	e of line	Type of Opening	Seam Mined	Draining <u>Water</u>	Total No. Openings	Area Mined (Acres)	Maximum Head (Feet)
1.	Langham	Drift	D	-	4	32	_
2.	Commodore #3*	Slope	D	X	9	538	120
3.	Buterbaugh	Drift	В	x	2	56	10
4.	Harve Mack	Drift	В	x	4	144	47

Table 27 Continued

Abandoned Mines

North Branch Watershed

	e of ine	Type of Opening	Seam Mined	Draining Water	Total No. Openings	Area Mined (Acres)	Maximum Head (Feet)
5.	Hines #5	Drift	В	x	2	140	50
6.	Empire #5	Drift	В	X	2	144	74
7.	Empire #7	Drift	В	X	3	151	49
8.	Stonebraker	Drift	D	X	2	4	3
9.	Myers	Drift	D	x	1	48	0
10.	Nichol	Drift	D	-	2	19	-
11.	Commodore #1	Slope	D	х	3	701	172
12.	Commodore #2	Slope	D	X	1	198	172
13.	Estep	Slope	В	x	2	139	0
14.	Empire #8	Slope	В	x	5	365	37
15.	Glenside #1	Slope	В	-	1	34	-
16.	Glenside #6	Slope	D	_	2	313	-

^{*}Includes main openings of Ake, Wise, Clawson, and First Street Drift Mines.

The Commodore complex is by far the most extensive and portions of it lie outside of the watershed area beneath the Crooked Creek Watershed.

Both the Lower Kittanning (B) and Lower Freeport (D) seams were mined.

The majority of the complexes are sources of mine drainage which are further described in Paragraph e.

Strip Mines

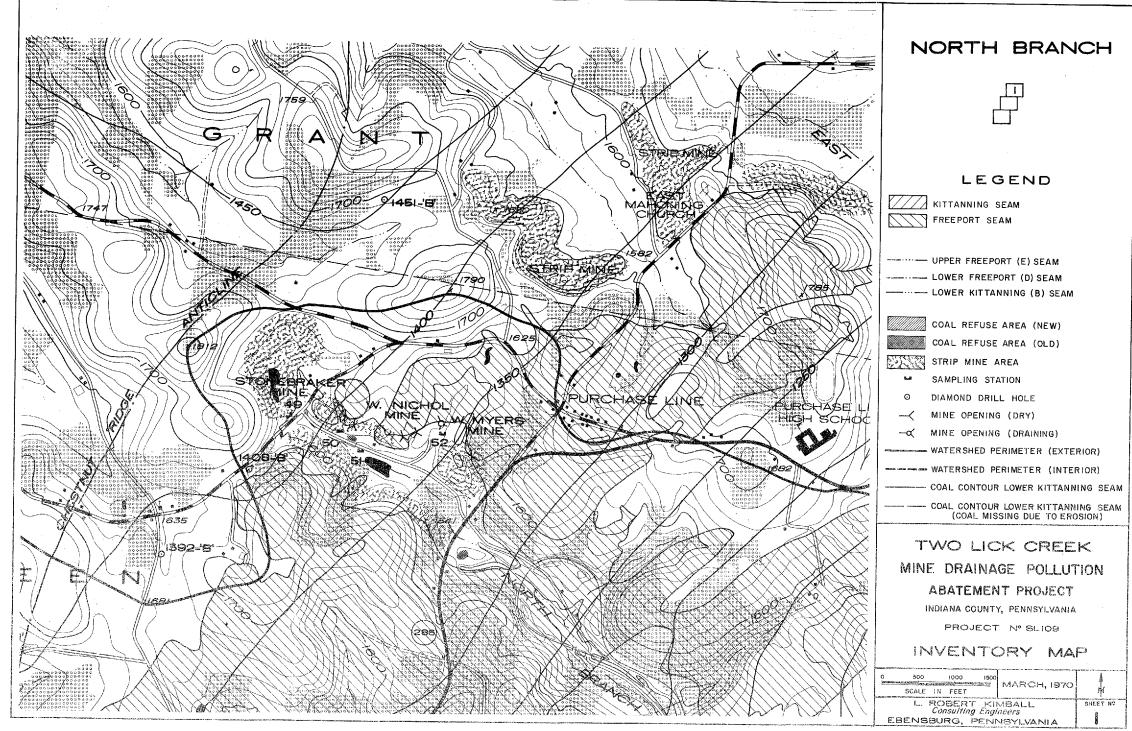
Strip mining activity reached its peak in the 1950's and early 1960's. There are presently no active strips in the basin.

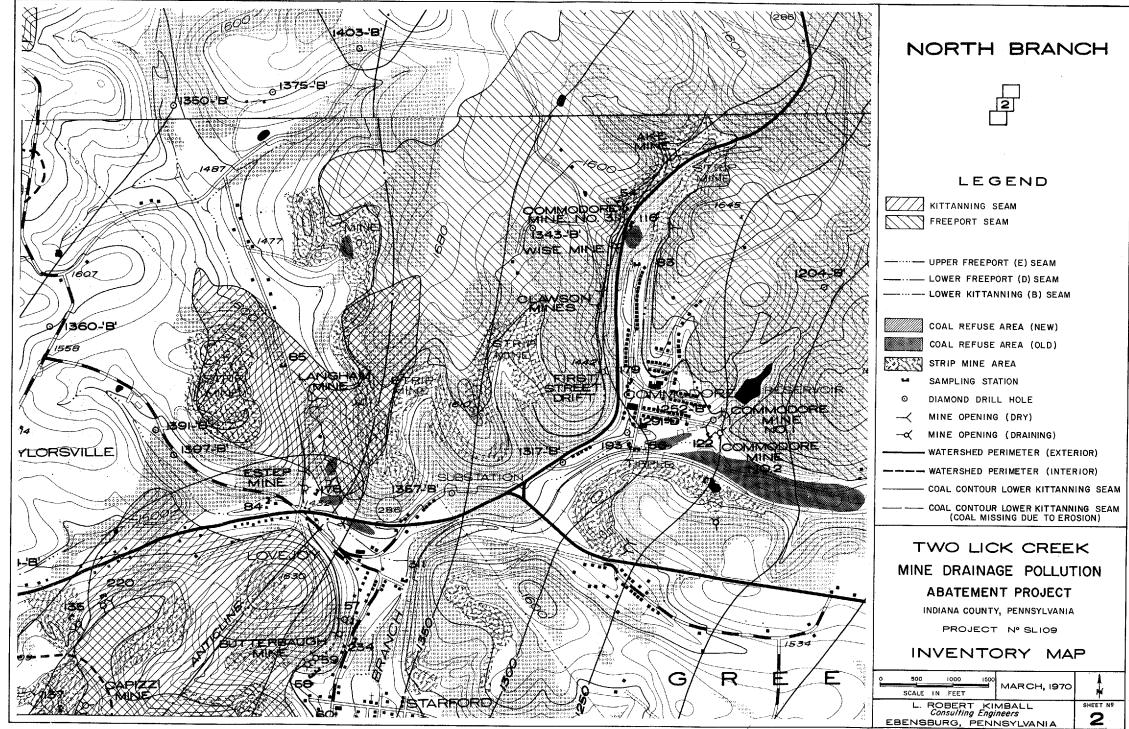
Approximately 533 acres have been stripped. Most of the mines are shallow with little overburden disturbed. For this reason and because backfilling and revegetation was practiced, in most cases, there is very little mine drainage pollution from strip mine sources.

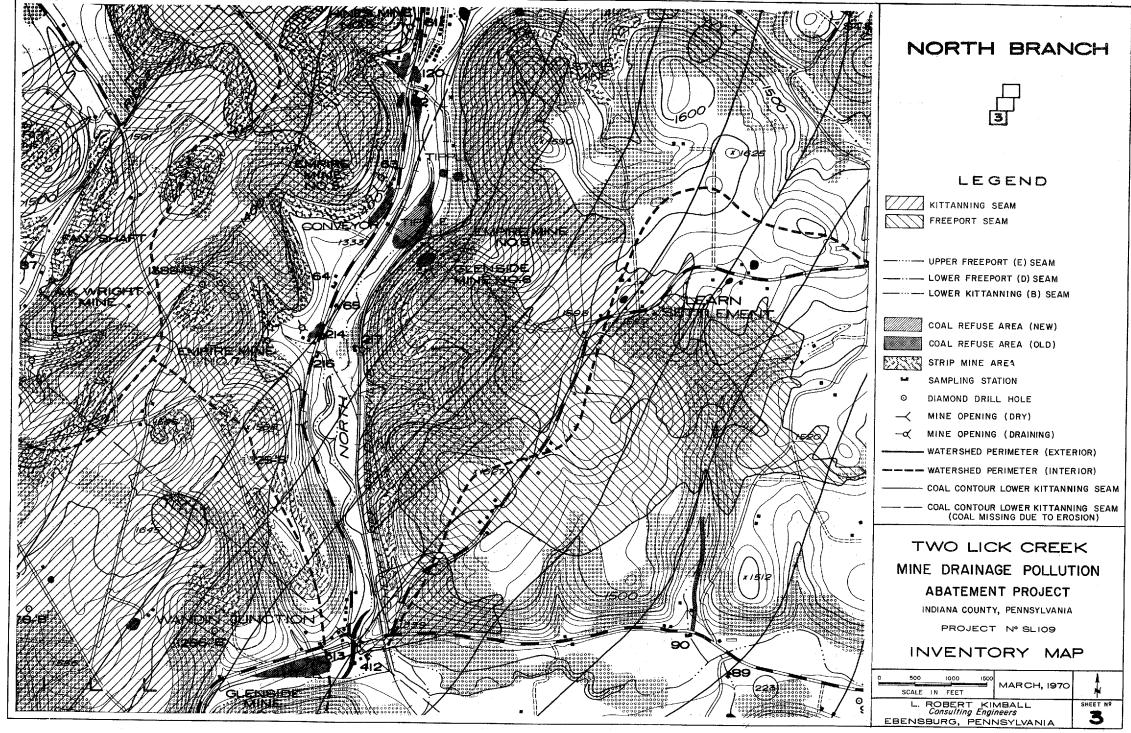
e. Description of Mine Drainage Sources

The major mine drainage sources are listed on the following two pages in Table $\underline{28}$ beginning with the most serious contributor of acid load. Each source is associated with the sampling station(s) measuring the mine drainage and the contamination load. Plates $\underline{24}$, $\underline{25}$, and $\underline{26}$ show the locations of the various sources.

Combined maximum heads are given for deep mines that are draining. Deep mines that are interconnected are listed collectively as one source.


Major Mine Drainage Sources


	Source cription	Flow GPM	Sampling Station(s)	Polluti <u>A</u> cid	on Load - Iron	Lbs./Day Sulfate	Combined Maximum Head (Feet)
1.	Commodore #1, #2, and #3 Mines	472	179, 122 54, 116	668	45	7,736	172
2.	Empire #8 Mine	110	217	602	390	3,290	37
3.	Harve Mack Mine Buterbaugh Mine Hines #5 Mine	136	57, 58, 59, 60, 61, 62, 120, 234	2 35	13	1,196	50
4.	Empire #8 Coal Tipple	84	Estimated	200	. 5	1,000	0
5.	Empire #5 Mine	49	63	45	1	287	74
6.	Glenside #6 Strip Mine	367	Estimated	44	1	300	0
7.	Empire #7 Mine	51	214, 216	44	1	340	0
8.	South Commodore Strip	208	Estimated and 55, 56	25	3	325	0
9.	Estep Mine	37	178	15	3	55	0
10.	Capizzi Deep and Strip Mine	185	84	16	1	343	0
11.	Myers Mine	7	52	10	1	34	3
12.	Commodore #3 Strip	42	Estimated	5	1	30	0
13.	Stonebraker Deep and Strip Mine	15	50	4	0	32	3


Table $\underline{28}$ Continued

Major Mine Drainage Sources

S	ource	Flow	Sampling	Polluti	on Load -	· Lbs./Day	Combined Maximum
Desc	ription	GPM	Station(s)	Acid	Iron	Sulfate	Head (Feet)
14.	Northwest Wandin Strip	25	Estimated	3	0	30	0
15.	Myers Strip	17	Estimated	2	0	20	0
16.	W. Nichol Strip Mine	17	Estimated	2	0	20	0

f. Recommended Abatement Procedures - Cost Benefication

Recommended abatement treatments and related costs are listed for the various sources of pollution in Table 29.

All treatments and costs are based on data described in Section X.

A key to define the recommended abatement procedures is shown on Page 107.

Two abatement plans, a primary and alternate, are recommended for rehabilitation of the watershed.

Plan A is recommended as the primary plan and Plan B as the alternate.

An estimated effectiveness of 75% reduction of pollution load is assigned for each recommended treatment in both plans.*

Plan A is based on an arbitrary maximum cost of \$1,000.00 per pound of acid load abated and will provide an estimated reduction of acid load in the magnitude of 82% for the watershed.

Plan B is based on an arbitrary cost of \$400.00 per pound of acid load abated and will provide an estimated reduction of acid load of approximately 78% for the watershed.

Table <u>29a</u> lists the sources abated, the amount of benefication, and costs associated with both plans.

*With the exception of treatment plants which are assigned an effectiveness of 100% reduction of pollution load.

Table 23

Recommended Abatement Procedures - Cost Benefication

Sou	rce Name	Pollution Order	Recommended Treatment Procedures		Total Cost \$	Cost Per Pound \$	Total Abatement Lbs. Acid/Day
1.	Empire #8 Mine	2	5 Seals	\$	55,000	\$ 121.79	452
2.	Northwest Wandin Strip Mine	14	8A - R3		440	191.30	2
3.	Myers Strip Mine	15	10A - R3		550	366.67	1
4.	South Commodore Strip Mine	8	16A - R2 - F		7,040	374.47	19
5.	Glenside #6 Strip Mine	6	22A - R2 F - D		15,279	463.00	33
6.	Harve Mack, Buterbaugh, and Hines #5 Mines	3	8 Seals		88,000	498.87	176
7.	Empire #5 Mine	5	2 Seals		22,000	654.76	34 .
8.	Nichol Strip Mine	16	19A - R3		1,045	696.67	1
9.	Empire #7 Mine	7	3 Seals		33,000	1,000.00	33
10.	Myers Mine	11	1 Seal		11,000	1,447.37	8
11.	Stonebraker Deep and Strip Mine	13	6A - Pond		4,620	1,593.10	3
12.	Capizzi Deep Mine	10	2 Seals		22,000	1,803.28	12
13.	Commodore #1, #2, and #3 Mines	1	Plant	1	,242,825	1,861.63	668

Table 29 Continued

Recommended Abatement Procedures - Cost Benefication

North Branch Watershed

Sour	ce Name	Pollution Order	Recommended Treatment Procedures		Total Cost \$	Cost Per Pound \$	Total Abatement Lbs. Acid/Day
14.	Estep Mine	9	2 Seals	\$	22,000	\$1,946.90	11
15.	Commodore #3 Strip Mine	12	24A - R2		8,580	2,257.89	4
	Total all Sources			\$1	,533,379		1,457

Table 29a

Benefication - Recommended Plans

<u>Plan</u>	Above Sources Abated	Benefication Pollution Reduction Acid Lbs./Day - % of Total	Benefication Pollution Reduction Iron Lbs./Day - % of Total	Benefication Pollution Reduction Sulfate Lbs./Day - % of Total	Total Cost
A	1 - 9	752 – 39%	30 7 – 66%	4,356 - 29%	\$ 222 ,354 63,030
B	1 - 4	474 – 25%	29 5 – 63%	2,749 - 18%	

KEY TO RECOMMENDED ABATEMENT PROCEDURES

- R1 Grass and legumes Method #1
- R2 Grass and legumes Method #2
- R3 Seedlings
- F Flumes
- D Ditching
- B Terrace backfill
- A Acreage on strip mines and refuse piles
- RP Standard Refuse Pile Reclamation
- RB Refuse Burial and Reclamation
- SC Soil Cover
- Plant Treatment Plant
- Pond Pond Construction and Reclamation
- Seal Mine Seal